Journal of Materials Science

, Volume 46, Issue 9, pp 3144–3150 | Cite as

Study of isothermal δ′ (Al3Li) precipitation in an Al–Li alloy by thermoelectric power



We study the isothermal δ′ (Al3Li) precipitation kinetics in an Al–2.3 wt% Li–0.1 wt% Zr alloy by means of the measurement of the thermoelectric power (TEP) in the temperature range between 120 and 180 °C. We obtain that the nucleation-and-growth stage of δ′ precipitation reaction can be well described by the Johnson–Mehl–Avrami–Kolmogorov (JMAK) relation. This result suggests that the JMAK relation provides a good description of the impingement effect of growing δ′ precipitates where interactions mainly occur on neighbouring precipitates. The activation energy associated to the nucleation-and-growth stage calculated from the JMAK fit is 52 ± 1 kJ/mol. The small activation energy obtained is ascribed to the presence of a large amount of excess vacancies quenched-in from the ageing temperature, inherent to the experimental conditions of the measurement of the TEP, reducing the activation energy to a value close to the vacancy migration energy in aluminium (45–65 kJ/mol). The Avrami exponent of this stage ranges between 1.5 and 1.65. These kinetic parameters indicate that δ′ particles grow via a three-dimensional vacancy migration-controlled mechanism.


Activation Energy Thermoelectric Power Precipitation Process Precipitation Reaction Al3Zr 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank Professor J.M. San Juan for the provision of laboratory facilities.


  1. 1.
    Martin JW (1988) Annu Rev Mater Res 18:101CrossRefGoogle Scholar
  2. 2.
    Williams JC, Starke EA (2003) Acta Mater 51:5775CrossRefGoogle Scholar
  3. 3.
    Csontos AA, Starke EA (2005) Int J Plast 21:1097CrossRefGoogle Scholar
  4. 4.
    Nembach E (2000) Prog Mater Sci 45:275CrossRefGoogle Scholar
  5. 5.
    Satya Prasad K, Mukhopadhyay AK, Gokhale AA, Banerjee D, Goel DB (1994) Scripta Metall 30:1299CrossRefGoogle Scholar
  6. 6.
    Warner T (2006) Mater Sci Forum 519–521:1271CrossRefGoogle Scholar
  7. 7.
    Lequeu P, Smith KP, Daniélou A (2010) J Mater Eng Perform 19:841CrossRefGoogle Scholar
  8. 8.
    Steglich D, Wafai H, Besson J (2010) Eng Fract Mech 77:3501CrossRefGoogle Scholar
  9. 9.
    Noble B, Bray SE (1999) Philos Mag A 79:859CrossRefGoogle Scholar
  10. 10.
    Poduri R, Chen LQ (1998) Acta Mater 46:3915CrossRefGoogle Scholar
  11. 11.
    Tsao CS, Chen CY, Kuo TY, Lin TL, Yu MS (2003) Mater Sci Eng A 363:228CrossRefGoogle Scholar
  12. 12.
    Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35CrossRefGoogle Scholar
  13. 13.
    Wagner C (1961) Z Elektrochem 65:581Google Scholar
  14. 14.
    Noble B, Trowsdale AJ (1995) Scripta Metall Mater 33:33CrossRefGoogle Scholar
  15. 15.
    Starink MJ, Gregson PJ (1996) Mater Sci Eng A 211:54CrossRefGoogle Scholar
  16. 16.
    Kissinger HE (1957) Anal Chem 29:1702CrossRefGoogle Scholar
  17. 17.
    Kolmogorov AN (1937) Ivz Akad Nauk SSSR, Ser Mat 3:355Google Scholar
  18. 18.
    Austin JB, Rickett RL (1939) Trans Am Inst Met Eng 135:396Google Scholar
  19. 19.
    Johnson WA, Mehl RF (1939) Trans Am Inst Met Eng 135:416Google Scholar
  20. 20.
    Avrami M (1939) J Chem Phys 7:1103CrossRefGoogle Scholar
  21. 21.
    Avrami M (1940) J Chem Phys 8:212CrossRefGoogle Scholar
  22. 22.
    Christian JW (1981) The theory of transformations in metals and alloys. Part I: equilibium and general kinetics theory, vol 1. Pergamon Press, Oxford, UKGoogle Scholar
  23. 23.
    Starink MJ (1997) J Mater Sci 32:4061. doi: 10.1023/A:1018649823542 CrossRefGoogle Scholar
  24. 24.
    Starink MJ, Zahra AM (1999) J Mater Sci 34:1117. doi: 10.1023/A:1004516600251 CrossRefGoogle Scholar
  25. 25.
    Pelletier JM, Borrelly R (1982) Mater Sci Eng 55:191CrossRefGoogle Scholar
  26. 26.
    Massardier V, Epicier T, Merle P (2000) Acta Mater 48:2911CrossRefGoogle Scholar
  27. 27.
    Pelletier JM, Vigier G, Merlin J, Merle P, Fouquet R, Borrelly R (1984) Acta Metall 32:1069CrossRefGoogle Scholar
  28. 28.
    Raynaud GM, Guyot P (1988) Acta Metall 36:143CrossRefGoogle Scholar
  29. 29.
    Woldt E (1992) J Phys Chem Solids 53:521CrossRefGoogle Scholar
  30. 30.
    Starink MJ (1997) J Mater Sci 32:6505. doi: 10.1023/A:1018655026036 CrossRefGoogle Scholar
  31. 31.
    Ruitenberg G, Woldt E, Petford-Long AK (2001) Thermochim Acta 378:97CrossRefGoogle Scholar
  32. 32.
    Lee ES, Kim YG (1990) Acta Metall 38:1669CrossRefGoogle Scholar
  33. 33.
    Noble B, Thompson GE (1971) J Met Sci 5:114CrossRefGoogle Scholar
  34. 34.
    Noble B, Harris SJ, Dinsdale K (1997) Acta Mater 45:2069CrossRefGoogle Scholar
  35. 35.
    Noble B, Bray SE (1998) Acta Metall 46:6163Google Scholar
  36. 36.
    Gayle FW, Sande JBV (1984) Scripta Metall 18:473CrossRefGoogle Scholar
  37. 37.
    Vecchio KS, Williams DB (1987) Acta Metall 35:2959CrossRefGoogle Scholar
  38. 38.
    Sun NX, Liu XD, Lu K (1996) Scripta Mater 34:1201CrossRefGoogle Scholar
  39. 39.
    Weinberg MC, Birnie DP, Shneidman VA (1997) J Non-Cryst Solids 219:89CrossRefGoogle Scholar
  40. 40.
    Todinov MT (2000) Acta Mater 48:4217CrossRefGoogle Scholar
  41. 41.
    Starink MJ (2001) J Mater Sci 36:4433. doi: 10.1023/A:1017974517877 CrossRefGoogle Scholar
  42. 42.
    Costas LP, Marshall RP (1962) Trans Metall Soc AIME 224:970Google Scholar
  43. 43.
    Ceresara S, Giarda A, Sanchez A (1977) Philos Mag 35:97CrossRefGoogle Scholar
  44. 44.
    Flower HM, Gregson PJ (1987) Mater Sci Technol 3:81Google Scholar
  45. 45.
    Rooyen MV, Mittemeijer EJ (1989) Metall Trans A 20:1207CrossRefGoogle Scholar
  46. 46.
    Noble B, Trowsdale AJ (1995) Philos Mag A 71(6):1345CrossRefGoogle Scholar
  47. 47.
    Starink MJ, Wang P, Sinclair I, Gregson PJ (1999) Acta Mater 47:3841CrossRefGoogle Scholar
  48. 48.
    Starink MJ, Zahra AM (1998) Acta Mater 46:3381CrossRefGoogle Scholar
  49. 49.
    Wang KG, Glicksman ME, Rajan K (2005) Comput Mater Sci 34:235CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Max-Planck-Institut für EisenforschungDüsseldorfGermany

Personalised recommendations