Journal of Materials Science

, Volume 46, Issue 9, pp 2928–2937 | Cite as

Highly stable, mesoporous mixed lanthanum–cerium oxides with tailored structure and reducibility

  • Shuang Liang
  • Esteban Broitman
  • Yanan Wang
  • Anmin Cao
  • Götz Veser


Pure and mixed lanthanum and cerium oxides were synthesized via a reverse microemulsion-templated route. This approach yields highly homogeneous and phase-stable mixed oxides with high surface areas across the entire range of La:Ce ratios from pure lanthana to pure ceria. Surprisingly, all mixed oxides show the fluorite crystal structure of ceria, even for lanthanum contents as high as 90%. Varying the La:Ce ratio not only allows tailoring of the oxide morphology (lattice parameter, pore structure, particle size, and surface area), but also results in a fine-tuning of the reducibility of the oxide which can be explained by the creation of oxygen vacancies in the ceria lattice upon La addition. Such finely controlled syntheses, which enable the formation of stable, homogeneous mixed oxides across the entire composition range, open the path towards functional tailoring of oxide materials, such as rational catalyst design via fine-tuning of redox activity.


Ceria CeO2 Mixed Oxide La2O3 Cerium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Energy Technology Laboratory’s on-going research under the RDS contract DE-AC26-04NT41817; by the Department of Energy—Basic Energy Science through Grant DE-FG02-05ER46233; and by the National Science Foundation through Grant CTS-0553365. G.V. gratefully acknowledges a CNG faculty fellowship of the University of Pittsburgh’s Swanson School of Engineering, and a faculty fellowship from DOE-NETL.


  1. 1.
    Yan ZG, Yan CH (2008) J Mater Chem 18:5046CrossRefGoogle Scholar
  2. 2.
    Zhang D, Yoshioka F, Ikeue K, Machida M (2008) Chem Mater 20:6697CrossRefGoogle Scholar
  3. 3.
    Zou Z-Q, Meng M, Zha Y-Q, Liu Y (2008) J Mater Sci 43:1958. doi: 10.1007/s10853-008-2460-1 CrossRefGoogle Scholar
  4. 4.
    Suda A, Yamamura K, Morikawa A, Nagai Y, Sobukawa H, Ukyo Y, Shinjo H (2008) J Mater Sci 43:2258. doi: 10.1007/s10853-007-2111-y CrossRefGoogle Scholar
  5. 5.
    Flytzani-Stephanopoulos M, Sakbodin M, Wang Z (2006) Science 312:1508CrossRefGoogle Scholar
  6. 6.
    Wang Z, Flytzani-Stephanopoulos M (2005) Energy Fuels 19:2089CrossRefGoogle Scholar
  7. 7.
    Chang JR, Chang SL, Lin TB (1997) J Catal 169:338CrossRefGoogle Scholar
  8. 8.
    Leckel D (2009) Energy Fuels 23:2370CrossRefGoogle Scholar
  9. 9.
    Nunan JG, Robota HJ, Cohn MJ, Bradley SA (1992) J Catal 133:309CrossRefGoogle Scholar
  10. 10.
    de Leitenburg C, Trovarelli A, Llorca J, Cavani F, Bini G (1996) Appl Catal A 139:161CrossRefGoogle Scholar
  11. 11.
    Kaspar J, Fornasiero P, Graziani M (1999) Catal Today 50:285CrossRefGoogle Scholar
  12. 12.
    Fu Q, Weber A, Flytzani-Stephanopoulos M (2001) Catal Lett 77:87CrossRefGoogle Scholar
  13. 13.
    Gennequin C, Lamallem M, Cousin R, Siffert S, Idakiev V, Tabakova T, Aboukaïs A, Su B (2009) J Mater Sci 44:6654. doi: 10.1007/s10853-009-3631-4 CrossRefGoogle Scholar
  14. 14.
    Park JB, Graciani J, Evans J, Stacchiola D, Ma S, Liu P, Nambu A, Sanz JF, Hrbek J, Rodriguez JA (2009) Proc Natl Acad Sci USA 106:4975CrossRefGoogle Scholar
  15. 15.
    Bae JS, Choo WK, Lee CH (2004) J Eur Ceram Soc 24:1291CrossRefGoogle Scholar
  16. 16.
    Balducci G, Islam MS, Kaspar J, Fornasiero P, Graziani M (2003) Chem Mater 15:3781CrossRefGoogle Scholar
  17. 17.
    Balducci G, Kaspar J, Fornasiero P, Graziani M, Islam MS (1998) J Phys Chem B 102:557CrossRefGoogle Scholar
  18. 18.
    Zhao X, Chen F, You J, Li X, Lu X, Chen Z (2010) J Mater Sci 45:3563. doi: 10.1007/s10853-010-4399-2 CrossRefGoogle Scholar
  19. 19.
    HartmanovÁ M, Lomonova E, NavrÁTil V, ŠUtta P, Kundracik F (2005) J Mater Sci 40:5679. doi: 10.1007/s10853-005-2795-9s CrossRefGoogle Scholar
  20. 20.
    Abanades S, Legal A, Cordier A, Peraudeau G, Flamant G, Julbe A (2010) J Mater Sci 45:4163. doi: 10.1007/s10853-010-4506-4 CrossRefGoogle Scholar
  21. 21.
    Qiao D, Lu G, Mao D, Guo Y, Guo Y (2010) J Mater Sci. doi: 10.1007/s10853-010-4786-8
  22. 22.
    Hosono E, Kujihara S (2004) Chem Commun 2062Google Scholar
  23. 23.
    Balducci G, Islam MS, Kaspar J, Fornasiero P, Graziani M (2000) Chem Mater 12:677CrossRefGoogle Scholar
  24. 24.
    Wilkes MF, Hayden P, Bhattacharya AK (2003) J Catal 219:305CrossRefGoogle Scholar
  25. 25.
    Ryan KM, McGrath JP, Farrell RA, Neill WMO, Barnes CJ, Morris MA (2003) J Phys: Condens Matter 15:L49CrossRefGoogle Scholar
  26. 26.
    Dikmen S, Shuk P, Greenblatt M (1999) Solid State Ionics 126:89CrossRefGoogle Scholar
  27. 27.
    Harrison PG, Kelsall A, Wood JV (1998) J Sol-Gel Sci Technol 13:1049CrossRefGoogle Scholar
  28. 28.
    Morris BC, Flavell WR, Mackrodt WC, Morris MA (1993) J Mater Chem 3:1007CrossRefGoogle Scholar
  29. 29.
    Belliere V, Joorst G, Stephan O, de Groot FMF, Weckhuysen BM (2006) J Phys Chem B 110:9984CrossRefGoogle Scholar
  30. 30.
    Pileni MP (1997) Langmuir 13:3266CrossRefGoogle Scholar
  31. 31.
    Fanun M (2009) Microemulsions: properties and applications. CRC Press, Boca RatonGoogle Scholar
  32. 32.
    Zarur AJ, Ying JY (2000) Nature 403:65CrossRefGoogle Scholar
  33. 33.
    Schicks J, Neumann D, Specht U, Veser G (2003) Catal Today 81:287CrossRefGoogle Scholar
  34. 34.
    Kirchhoff M, Specht U, Veser G (2005) Nanotechnology 16:S401CrossRefGoogle Scholar
  35. 35.
    Sanders T, Papas P, Veser G (2008) Chem Eng J 142:122CrossRefGoogle Scholar
  36. 36.
    Lyons DM, Harman LP, Morris MA (2004) J Mater Chem 14:1976CrossRefGoogle Scholar
  37. 37.
    Sheng J, Zhang S, Lv S, Sun W (2007) J Mater Sci 42:9565. doi: 10.1007/s10853-007-2064-1 CrossRefGoogle Scholar
  38. 38.
    Lacombe S, Geantet C, Mirodatos C (1995) J Catal 151:439CrossRefGoogle Scholar
  39. 39.
    Luo X, Wang R, Ni J, Lin J, Lin B, Xu X, Wei K (2009) Catal Lett 133:382CrossRefGoogle Scholar
  40. 40.
    Bernal S, Botana FJ, García R, Rodríguez-Izquierdo JM (1987) React Solid 4:23CrossRefGoogle Scholar
  41. 41.
    Mekhemer GAH, Balboul BAA (2001) Colloids Surf A 181:19CrossRefGoogle Scholar
  42. 42.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603CrossRefGoogle Scholar
  43. 43.
    Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Kluwer Academic Publishers, DordrechtGoogle Scholar
  44. 44.
    Thurber A, Reddy KM, Shutthanandan V, Engelhard MH, Wang C, Hays J, Punnoose A (2007) Phys Rev B 76:165206CrossRefGoogle Scholar
  45. 45.
    Zhou XD, Huebner W (2001) Appl Phys Lett 79:3512CrossRefGoogle Scholar
  46. 46.
    Patil S, Seal S, Guo Y, Schulte A, Norwood J (2006) Appl Phys Lett 88:243110CrossRefGoogle Scholar
  47. 47.
    Dutta G, Waghmare UV, Baidya T, Hegde MS, Priolkar KR, Sarode PR (2006) Chem Mater 18:3249CrossRefGoogle Scholar
  48. 48.
    Terribile D, Trovarelli A, de Leitenburg C, Dolcetti G, Llorca J (1997) Chem Mater 9:2676CrossRefGoogle Scholar
  49. 49.
    Wang X, Lu G, Guo Y, Jiang L, Guo Y, Li C (2009) J Mater Sci 44:1294. doi: 10.1007/s10853-009-3275-4 CrossRefGoogle Scholar
  50. 50.
    Si R, Flytzani-Stephanopoulos M (2008) Angew Chem Int Ed 47:2884CrossRefGoogle Scholar
  51. 51.
    Burroughs P, Hamnett A, Orchard AF, Thornton G (1976) J Chem Soc, Dalton Trans 1686Google Scholar
  52. 52.
    Trovarelli A (2002) Catalysis by ceria and related materials. Imperial College Press, LondonCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Shuang Liang
    • 1
    • 2
  • Esteban Broitman
    • 3
  • Yanan Wang
    • 1
    • 2
  • Anmin Cao
    • 1
    • 2
  • Götz Veser
    • 1
    • 2
  1. 1.US DOE-National Energy Technology LaboratoryPittsburghUSA
  2. 2.Department of Chemical EngineeringUniversity of PittsburghPittsburghUSA
  3. 3.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations