Skip to main content
Log in

Highly stable, mesoporous mixed lanthanum–cerium oxides with tailored structure and reducibility

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pure and mixed lanthanum and cerium oxides were synthesized via a reverse microemulsion-templated route. This approach yields highly homogeneous and phase-stable mixed oxides with high surface areas across the entire range of La:Ce ratios from pure lanthana to pure ceria. Surprisingly, all mixed oxides show the fluorite crystal structure of ceria, even for lanthanum contents as high as 90%. Varying the La:Ce ratio not only allows tailoring of the oxide morphology (lattice parameter, pore structure, particle size, and surface area), but also results in a fine-tuning of the reducibility of the oxide which can be explained by the creation of oxygen vacancies in the ceria lattice upon La addition. Such finely controlled syntheses, which enable the formation of stable, homogeneous mixed oxides across the entire composition range, open the path towards functional tailoring of oxide materials, such as rational catalyst design via fine-tuning of redox activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yan ZG, Yan CH (2008) J Mater Chem 18:5046

    Article  CAS  Google Scholar 

  2. Zhang D, Yoshioka F, Ikeue K, Machida M (2008) Chem Mater 20:6697

    Article  CAS  Google Scholar 

  3. Zou Z-Q, Meng M, Zha Y-Q, Liu Y (2008) J Mater Sci 43:1958. doi:10.1007/s10853-008-2460-1

    Article  CAS  Google Scholar 

  4. Suda A, Yamamura K, Morikawa A, Nagai Y, Sobukawa H, Ukyo Y, Shinjo H (2008) J Mater Sci 43:2258. doi:10.1007/s10853-007-2111-y

    Article  CAS  Google Scholar 

  5. Flytzani-Stephanopoulos M, Sakbodin M, Wang Z (2006) Science 312:1508

    Article  CAS  Google Scholar 

  6. Wang Z, Flytzani-Stephanopoulos M (2005) Energy Fuels 19:2089

    Article  CAS  Google Scholar 

  7. Chang JR, Chang SL, Lin TB (1997) J Catal 169:338

    Article  CAS  Google Scholar 

  8. Leckel D (2009) Energy Fuels 23:2370

    Article  CAS  Google Scholar 

  9. Nunan JG, Robota HJ, Cohn MJ, Bradley SA (1992) J Catal 133:309

    Article  CAS  Google Scholar 

  10. de Leitenburg C, Trovarelli A, Llorca J, Cavani F, Bini G (1996) Appl Catal A 139:161

    Article  Google Scholar 

  11. Kaspar J, Fornasiero P, Graziani M (1999) Catal Today 50:285

    Article  CAS  Google Scholar 

  12. Fu Q, Weber A, Flytzani-Stephanopoulos M (2001) Catal Lett 77:87

    Article  CAS  Google Scholar 

  13. Gennequin C, Lamallem M, Cousin R, Siffert S, Idakiev V, Tabakova T, Aboukaïs A, Su B (2009) J Mater Sci 44:6654. doi:10.1007/s10853-009-3631-4

    Article  CAS  Google Scholar 

  14. Park JB, Graciani J, Evans J, Stacchiola D, Ma S, Liu P, Nambu A, Sanz JF, Hrbek J, Rodriguez JA (2009) Proc Natl Acad Sci USA 106:4975

    Article  CAS  Google Scholar 

  15. Bae JS, Choo WK, Lee CH (2004) J Eur Ceram Soc 24:1291

    Article  CAS  Google Scholar 

  16. Balducci G, Islam MS, Kaspar J, Fornasiero P, Graziani M (2003) Chem Mater 15:3781

    Article  Google Scholar 

  17. Balducci G, Kaspar J, Fornasiero P, Graziani M, Islam MS (1998) J Phys Chem B 102:557

    Article  CAS  Google Scholar 

  18. Zhao X, Chen F, You J, Li X, Lu X, Chen Z (2010) J Mater Sci 45:3563. doi:10.1007/s10853-010-4399-2

    Article  CAS  Google Scholar 

  19. HartmanovÁ M, Lomonova E, NavrÁTil V, ŠUtta P, Kundracik F (2005) J Mater Sci 40:5679. doi:10.1007/s10853-005-2795-9s

    Article  Google Scholar 

  20. Abanades S, Legal A, Cordier A, Peraudeau G, Flamant G, Julbe A (2010) J Mater Sci 45:4163. doi:10.1007/s10853-010-4506-4

    Article  CAS  Google Scholar 

  21. Qiao D, Lu G, Mao D, Guo Y, Guo Y (2010) J Mater Sci. doi:10.1007/s10853-010-4786-8

  22. Hosono E, Kujihara S (2004) Chem Commun 2062

  23. Balducci G, Islam MS, Kaspar J, Fornasiero P, Graziani M (2000) Chem Mater 12:677

    Article  CAS  Google Scholar 

  24. Wilkes MF, Hayden P, Bhattacharya AK (2003) J Catal 219:305

    Article  CAS  Google Scholar 

  25. Ryan KM, McGrath JP, Farrell RA, Neill WMO, Barnes CJ, Morris MA (2003) J Phys: Condens Matter 15:L49

    Article  CAS  Google Scholar 

  26. Dikmen S, Shuk P, Greenblatt M (1999) Solid State Ionics 126:89

    Article  CAS  Google Scholar 

  27. Harrison PG, Kelsall A, Wood JV (1998) J Sol-Gel Sci Technol 13:1049

    Article  CAS  Google Scholar 

  28. Morris BC, Flavell WR, Mackrodt WC, Morris MA (1993) J Mater Chem 3:1007

    Article  CAS  Google Scholar 

  29. Belliere V, Joorst G, Stephan O, de Groot FMF, Weckhuysen BM (2006) J Phys Chem B 110:9984

    Article  CAS  Google Scholar 

  30. Pileni MP (1997) Langmuir 13:3266

    Article  CAS  Google Scholar 

  31. Fanun M (2009) Microemulsions: properties and applications. CRC Press, Boca Raton

    Google Scholar 

  32. Zarur AJ, Ying JY (2000) Nature 403:65

    Article  CAS  Google Scholar 

  33. Schicks J, Neumann D, Specht U, Veser G (2003) Catal Today 81:287

    Article  CAS  Google Scholar 

  34. Kirchhoff M, Specht U, Veser G (2005) Nanotechnology 16:S401

    Article  Google Scholar 

  35. Sanders T, Papas P, Veser G (2008) Chem Eng J 142:122

    Article  CAS  Google Scholar 

  36. Lyons DM, Harman LP, Morris MA (2004) J Mater Chem 14:1976

    Article  CAS  Google Scholar 

  37. Sheng J, Zhang S, Lv S, Sun W (2007) J Mater Sci 42:9565. doi:10.1007/s10853-007-2064-1

    Article  CAS  Google Scholar 

  38. Lacombe S, Geantet C, Mirodatos C (1995) J Catal 151:439

    Article  CAS  Google Scholar 

  39. Luo X, Wang R, Ni J, Lin J, Lin B, Xu X, Wei K (2009) Catal Lett 133:382

    Article  CAS  Google Scholar 

  40. Bernal S, Botana FJ, García R, Rodríguez-Izquierdo JM (1987) React Solid 4:23

    Article  CAS  Google Scholar 

  41. Mekhemer GAH, Balboul BAA (2001) Colloids Surf A 181:19

    Article  CAS  Google Scholar 

  42. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  43. Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  44. Thurber A, Reddy KM, Shutthanandan V, Engelhard MH, Wang C, Hays J, Punnoose A (2007) Phys Rev B 76:165206

    Article  Google Scholar 

  45. Zhou XD, Huebner W (2001) Appl Phys Lett 79:3512

    Article  CAS  Google Scholar 

  46. Patil S, Seal S, Guo Y, Schulte A, Norwood J (2006) Appl Phys Lett 88:243110

    Article  Google Scholar 

  47. Dutta G, Waghmare UV, Baidya T, Hegde MS, Priolkar KR, Sarode PR (2006) Chem Mater 18:3249

    Article  CAS  Google Scholar 

  48. Terribile D, Trovarelli A, de Leitenburg C, Dolcetti G, Llorca J (1997) Chem Mater 9:2676

    Article  CAS  Google Scholar 

  49. Wang X, Lu G, Guo Y, Jiang L, Guo Y, Li C (2009) J Mater Sci 44:1294. doi:10.1007/s10853-009-3275-4

    Article  CAS  Google Scholar 

  50. Si R, Flytzani-Stephanopoulos M (2008) Angew Chem Int Ed 47:2884

    Article  CAS  Google Scholar 

  51. Burroughs P, Hamnett A, Orchard AF, Thornton G (1976) J Chem Soc, Dalton Trans 1686

  52. Trovarelli A (2002) Catalysis by ceria and related materials. Imperial College Press, London

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Energy Technology Laboratory’s on-going research under the RDS contract DE-AC26-04NT41817; by the Department of Energy—Basic Energy Science through Grant DE-FG02-05ER46233; and by the National Science Foundation through Grant CTS-0553365. G.V. gratefully acknowledges a CNG faculty fellowship of the University of Pittsburgh’s Swanson School of Engineering, and a faculty fellowship from DOE-NETL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Götz Veser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, S., Broitman, E., Wang, Y. et al. Highly stable, mesoporous mixed lanthanum–cerium oxides with tailored structure and reducibility. J Mater Sci 46, 2928–2937 (2011). https://doi.org/10.1007/s10853-010-5168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5168-y

Keywords

Navigation