Journal of Materials Science

, Volume 46, Issue 9, pp 2887–2894 | Cite as

Thermoelectric properties and texture evaluation of Ca3Co4O9 prepared by a cost-effective multisheet cofiring technique

  • O-Jong Kwon
  • Wook Jo
  • Kyeong-Eun Ko
  • Jae-Yeol Kim
  • Sung-Hwan Bae
  • Hyun Koo
  • Seong-Min Jeong
  • Jin-Sang Kim
  • Chan Park


Highly textured Ca3Co4O9 thermoelectrics were fabricated by a so-called multisheet cofiring (MSC) technique in combination with the commonly practiced spark plasma sintering (SPS) technique. X-ray diffraction analysis revealed that the MSC technique significantly enhances the degree of texture compared with the conventional SPS technique. This was confirmed by microstructure analysis performed on polished and chemically etched specimens. The power factor and the thermoelectric figure of merit for the specimen produced by the MSC technique were estimated to be ~5.2 × 10−4 W/mK2 and ~0.4, respectively, both of which are ~20% larger than those of the normally processed specimens. A comparative study of the thermoelectric properties, such as electrical resistivity and Seebeck coefficient, clearly demonstrated that texture mainly influences the electrical resistivity and consequently enhances the thermoelectric properties.


CeO2 Electrical Resistivity Spark Plasma Sinter Thermoelectric Property Seebeck Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Mid-career Researcher Program of NRF/MEST (2010-0000463) in association with the Converging Research Center Program through the Ministry of Education, Science and Technology (2009-0093723) and the Core Technology of Materials Research and Development Program of the Korea Ministry of Intelligence and Economy (K00060071-55512).


  1. 1.
    Fujita K, Mochida T, Nakamura K (2001) Jpn J Appl Phys 40(7):4644CrossRefGoogle Scholar
  2. 2.
    Koumoto K, Terasaki I, Funahashi R (2006) MRS Bull 31(3):206CrossRefGoogle Scholar
  3. 3.
    Liu YH, Lin YH, Shi Z, Nan CW, Shen ZJ (2005) J Am Ceram Soc 88(5):1337CrossRefGoogle Scholar
  4. 4.
    Sugiura K, Ohta H, Nomura K, Hirano M, Hosono H, Koumoto K (2006) Appl Phys Lett 89(3):032111CrossRefGoogle Scholar
  5. 5.
    Shen JJ, Liu XX, Zhu TJ, Zhao XB (2009) J Mater Sci 44(7):1889. doi: 10.1007/s10853-009-3279-0 CrossRefGoogle Scholar
  6. 6.
    Diez JC, Guilmeau E, Madre MA, Marinel S, Lemonnier S, Sotelo A (2009) Solid State Ionics 180(11–13):827CrossRefGoogle Scholar
  7. 7.
    Son JY, Shin YH, Park CS (2008) J Appl Phys 104(3):033538CrossRefGoogle Scholar
  8. 8.
    Guilmeau E, Itahara H, Tani T, Chateigner D, Grebille D (2005) J Appl Phys 97(6):064902CrossRefGoogle Scholar
  9. 9.
    Zhou YQ, Matsubara I, Horii S, Takeuchi T, Funahashi R, Shikano M, Shimoyama J, Kishio K, Shin W, Izu N, Murayama N (2003) J Appl Phys 93(5):2653CrossRefGoogle Scholar
  10. 10.
    Mikami M, Guilmeau E, Funahashi R, Chong KJ, Chateigner D (2005) J Mater Res 20(9):2491CrossRefGoogle Scholar
  11. 11.
    Liu HQ, Wang FP, Liu F, Song Y, Jiang ZH (2006) J Mater Sci Mater Electron 17(7):525CrossRefGoogle Scholar
  12. 12.
    Liu HQ, Zhao XB, Zhu TJ, Song Y, Wang FP (2009) Curr Appl Phys 9(2):409CrossRefGoogle Scholar
  13. 13.
    Zhang YF, Zhang JX (2008) J Mater Process Technol 208(1–3):70CrossRefGoogle Scholar
  14. 14.
    Wang DL, Chen LD, Wang Q, Li JG (2004) J Alloy Compd 376(1–2):58CrossRefGoogle Scholar
  15. 15.
    Guilmeau E, Funahashi R, Mikami M, Chong K, Chateigner D (2004) Appl Phys Lett 85(9):1490CrossRefGoogle Scholar
  16. 16.
    Prevel M, Lemonnier S, Klein Y, Hébert S, Chateigner D, Ouladdiaf B, Noudem JG (2005) J Appl Phys 98(9):093706CrossRefGoogle Scholar
  17. 17.
    Masset AC, Michel C, Maignan A, Hervieu M, Toulemonde O, Studer F, Raveau B, Hejtmanek J (2000) Phys Rev B 62(1):166CrossRefGoogle Scholar
  18. 18.
    Kanno T, Yotsuhashi S, Adachi H (2004) Appl Phys Lett 85(5):739CrossRefGoogle Scholar
  19. 19.
    Shikano M, Funahashi R (2003) Appl Phys Lett 82(12):1851CrossRefGoogle Scholar
  20. 20.
    Jo W, Kim DY, Hwang NM (2006) J Am Ceram Soc 89(8):2369CrossRefGoogle Scholar
  21. 21.
    Moon JW, Nagahama D, Masuda Y, Seo WS, Koumoto K (2001) J Ceram Soc Jpn 109(8):647Google Scholar
  22. 22.
    Itahara H, Tani T (2004) R&D Rev Toyota CRDL 39(1):63Google Scholar
  23. 23.
    Jones JL, Iverson BJ, Bowman KJ (2007) J Am Ceram Soc 90(8):2297CrossRefGoogle Scholar
  24. 24.
    Guilmeau E, Chateigner D, Noudem J, Funahashi R, Horii S, Ouladdiaf B (2005) J Appl Crystallogr 38:199CrossRefGoogle Scholar
  25. 25.
    Lotgering FK (1959) J Inorg Nucl Chem 9(2):113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • O-Jong Kwon
    • 1
  • Wook Jo
    • 2
  • Kyeong-Eun Ko
    • 1
  • Jae-Yeol Kim
    • 1
  • Sung-Hwan Bae
    • 1
  • Hyun Koo
    • 1
  • Seong-Min Jeong
    • 3
  • Jin-Sang Kim
    • 4
  • Chan Park
    • 1
    • 5
  1. 1.Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.Institute of Materials ScienceTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Korea Institute of Ceramic Engineering and TechnologySeoulKorea
  4. 4.Korea Institute of Science and TechnologySeoulKorea
  5. 5.Research Institute of Advanced MaterialsSeoul National UniversitySeoulKorea

Personalised recommendations