Journal of Materials Science

, Volume 46, Issue 8, pp 2796–2804 | Cite as

Effect of brazing temperature on microstructure and mechanical properties of Si3N4/Si3N4 joints brazed with Ag–Cu–Ti + Mo composite filler



Mo particles have been introduced into Ag–Cu–Ti brazing alloy for the joining of Si3N4 ceramic. Effect of brazing temperature on microstructure and mechanical properties of the joints were investigated. The result shows that a continuous reaction layer which is composed of TiN and Ti5Si3 was formed at the Si3N4/braze interface. The central part of the joint was composed of Ag-based solid solution, Cu-based solid solution, Mo particles, and Cu–Ti intermetallic compounds. By increasing the brazing temperature, both the thickness of the reaction layer and amount of Cu–Ti intermetallic compounds in the joint increased, being beneficial for the joint strength. Whereas, the reaction between Ti and Si3N4 ceramic proceeded excessively and more Cu–Ti intermetallic compounds were precipitated in the joint while elevating the brazing temperature to 950 °C, leading to deterioration of the bending strength. The maximal bending strength reached 429.4 MPa at 900 °C for 5 min when the Si3N4 ceramic was brazed with Ag–Cu–Ti + Mo composite filler.


Intermetallic Compound Reaction Layer Joint Strength Braze Alloy Composite Filler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Nature Science Foundation of China under the number of 50975064 and Harbin Special Funds for Technological Innovation Research Projects under the number of 2009RFXXG036.


  1. 1.
    Liu CF, Meng QC, Naka M (2007) Ceram Int 33:427CrossRefGoogle Scholar
  2. 2.
    Zhang J, Naka M, Zhou Y (2005) J Mater Sci 39:3159. doi: 10.1023/B:JMSC.0000025848.59254.90 CrossRefGoogle Scholar
  3. 3.
    Liu GW, Valenza F, Muolo ML, Passerone A (2010) J Mater Sci 45:4299. doi: 10.1007/s10853-010-4337-3 CrossRefGoogle Scholar
  4. 4.
    Liu GW, Qiao GJ, Wang HJ, Yang JF, Lu TJ (2008) J Eur Ceram Soc 28:2701CrossRefGoogle Scholar
  5. 5.
    Zhang J, Sun Y, Liu CF, Zhang HW (2010) J Mater Sci 45:2188. doi: 10.1007/s10853-009-4132-1 CrossRefGoogle Scholar
  6. 6.
    Brochu M, Pugh MD, Drew RAL (2004) Mater Sci Eng A 374:34CrossRefGoogle Scholar
  7. 7.
    Singh M, Shpargel TP, Morscher GN, Asthana R (2005) Mater Sci Eng A 412:123CrossRefGoogle Scholar
  8. 8.
    Nascimento RM, Martinelli AE, Buschinelli AJA, Reisgen U, Remmel J (2005) J Mater Sci 40:4549. doi: 10.1007/s10853-005-0920-4 CrossRefGoogle Scholar
  9. 9.
    Liu CF, Zhang J, Zhou Y, Yi HL, Naka M (2009) J Alloys Compd 471:217CrossRefGoogle Scholar
  10. 10.
    Lemus J, Drew Robin AL (2003) Mater Sci Eng A 352:169CrossRefGoogle Scholar
  11. 11.
    Xu R, Indacochea JE (1994) J Mater Sci 29:6287. doi: 10.1007/BF00354573 CrossRefGoogle Scholar
  12. 12.
    Abed A, Jalham Issam S, Hendry A (2001) J Eur Ceram Soc 21:283CrossRefGoogle Scholar
  13. 13.
    Park JW, Eagar TW (2004) Scripta Mater 50:555CrossRefGoogle Scholar
  14. 14.
    Park JW, Mendez PF, Eagar TW (2002) Acta Mater 50:883CrossRefGoogle Scholar
  15. 15.
    Buhl S, Leinenbach C, Spolenak R, Wegener K (2010) J Mater Sci 45:4358. doi: 10.1007/s10853-010-4260-7 CrossRefGoogle Scholar
  16. 16.
    Lin GB, Huang JH, Zhang H (2007) J Mater Process Technol 189:256CrossRefGoogle Scholar
  17. 17.
    Blugan G, Kuebler J, Bissig V, Rusch JJ (2007) Ceram Int 33:1033CrossRefGoogle Scholar
  18. 18.
    Blugan G, Janczak-Rusch J, Kuebler J (2004) Acta Mater 52:4579CrossRefGoogle Scholar
  19. 19.
    Zhu MG, Chung DDL (1994) J Am Ceram Soc 77:2712CrossRefGoogle Scholar
  20. 20.
    Zhu MG, Chung DDL (1997) J Mater Sci 32:5321. doi: 10.1023/A:1018666827969 CrossRefGoogle Scholar
  21. 21.
    Zhang J, Liu CF, Naka M, Meng QC, Zhou Y (2004) J Mater Sci 39:4587. doi: 10.1023/B:JMSC.0000034153.96175 CrossRefGoogle Scholar
  22. 22.
    Luz AP, Ribeiro S (2008) Ceram Int 34:305CrossRefGoogle Scholar
  23. 23.
    Liu CF, Zhang J, Zhou Y, Meng QC, Naka M (2008) Mater Sci Eng A 491:483CrossRefGoogle Scholar
  24. 24.
    Wan CG, Xiong HP, Zhou ZF (1999) J Mater Sci 34:3013. doi: 10.1023/A:1004672426832 CrossRefGoogle Scholar
  25. 25.
    Zhang J, Guo YL, Naka M, Zhou Y (2008) Ceram Int 34:1159CrossRefGoogle Scholar
  26. 26.
    Brochu M, Drew RAL (2005) J Mater Sci 40:2443. doi: 10.1007/s10853-005-1972-1 CrossRefGoogle Scholar
  27. 27.
    Madelung O (1997) Landolt-Börnstein-Group IV Physical chemistry. Numerical data and functional relationships in science and technology, vol 5H. Springer-Verlag, GermanyGoogle Scholar
  28. 28.
    Shiue RK, Wu SK, Chan CH (2004) J Alloys Compd 372:148CrossRefGoogle Scholar
  29. 29.
    Yue X, He P, Feng JC, Zhang JH, Zhu FQ (2008) Mater Charact 59:1721CrossRefGoogle Scholar
  30. 30.
    Elrefaey A, Tillmann W (2009) J Mater Process Technol 209:4842CrossRefGoogle Scholar
  31. 31.
    Zhang CG, Qiao GJ, Jin ZH (2002) J Eur Ceram. Soc 22:2181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations