Advertisement

Journal of Materials Science

, Volume 46, Issue 7, pp 2350–2358 | Cite as

Mechanochemical synthesis and characterization of xIn2O3·(1 − x)α-Fe2O3 nanostructure system

  • Monica Sorescu
  • Tianhong Xu
  • Lucian Diamandescu
Article

Abstract

Indium oxide-doped hematite xIn2O3·(1 − x)α-Fe2O3 (x = 0.1–0.7) nanostructure system was synthesized using mechanochemical activation by ball milling and characterized by XRD, simultaneous DSC–TGA, and UV/Vis/NIR. The microstructure and thermal behavior of as obtained system were dependent on the starting In2O3 molar concentration x and ball milling time. XRD patterns yielded the dependence of lattice parameters and grain size as a function of ball milling time. After 12 h of ball milling, the completion of In3+ substitution of Fe3+ in hematite lattice occurs for x = 0.1, indicating that the solid solubility of In2O3 in hematite lattice is extended. For x = 0.3, 0.5, and 0.7, the substitutions between In3+ and Fe3+ into hematite and In2O3 lattice occur simultaneously. The lattice parameters a and c of hematite and lattice parameter a of indium oxide vary as a function of ball milling time. The changes of these parameters are due to ion substitutions between In3+ and Fe3+ and the decrease in the grain sizes. Ball milling has a strong effect on the thermal behavior and band gap energy of the as-obtained system. The hematite decomposition is enhanced due to the smaller hematite grain size. The crystallization of hematite and In2O3 was suppressed, with drops of enthalpy values due to the stronger solid–solid interactions after ball milling, which caused gradual In3+–Fe3+ substitution in hematite/In2O3 lattices. The band gap for hematite shifts to higher energy value, while that of indium oxide shifts to lower energy value after ball milling.

Keywords

Hematite Ball Milling In2O3 Milling Time Indium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work was supported by the National Science Foundation under grant DMR-0854794.

References

  1. 1.
    Wang GX, Gou XL, Horvat J, Park J (2008) J Phys Chem C 112:15220CrossRefGoogle Scholar
  2. 2.
    Raffaella B, Etienne S, Cinzia G, Fabia G, Mar GH, Miguel AG, Roberto C, Pantaleo DC (2009) Phys Chem Chem Phys 11:3680Google Scholar
  3. 3.
    Krishnamoorthy S, Rivas JA, Amiridis MD (2000) J Catal 193:264CrossRefGoogle Scholar
  4. 4.
    Sorescu M, Diamandescu L, Tomescu A, Tarabasanu-Mihaila D, Teodorescu V (2008) Mater Chem Phys 107:127CrossRefGoogle Scholar
  5. 5.
    Gulo A, Ivanovskaya M, Pfau A, Weimar U, Göpel W (1997) Thin Solid Films 307:288CrossRefGoogle Scholar
  6. 6.
    Perez-Maquela LA, Wang L, Matijević E (1998) Langmuir 14:4397CrossRefGoogle Scholar
  7. 7.
    Gurlo A, Bârsan N, Ivanovskaya M, Weimar U, Göpel W (1998) Sens Actuators B 47:92CrossRefGoogle Scholar
  8. 8.
    Takada T, Suzuki K, Nakane M (1993) Sens Actuators B 13–14:404CrossRefGoogle Scholar
  9. 9.
    Wang XD, Zhao XQ, Shen JY, Sun XY, Zhang T, Lin LW (2002) Phys Chem Chem Phys 4:2846CrossRefGoogle Scholar
  10. 10.
    Nomura K, Sakuma J, Ooki T, Takeda M (2008) Hyperfine Interact 184:117CrossRefGoogle Scholar
  11. 11.
    Ivanovskaya M, Kotsikau DA, Taurino A, Siciliano P (2007) Sens Actuators B 124:133CrossRefGoogle Scholar
  12. 12.
    Sorescu M, Diamandescu L, Tarabasanu-Mihaila D (2004) J Phys Chem Solids 65:1719CrossRefGoogle Scholar
  13. 13.
    Takizawa H, Uheda K, Endo T (2000) J Am Ceram Soc 83:2321CrossRefGoogle Scholar
  14. 14.
    Yu J, Duan LB, Wang YC, Rao GH (2009) J Phys Chem Solids 182:1563Google Scholar
  15. 15.
    Cesar I, Kay A, Martinez JAG, Grätzel M (2006) J Am Chem Soc 128:4582CrossRefGoogle Scholar
  16. 16.
    Kay A, Cesar I, Grätzel M (2006) J Am Chem Soc 128:15714CrossRefGoogle Scholar
  17. 17.
    Alexander BD, Kulesza PJ, Rukowska L, Solarska R, Augustynski J (2008) J Mater Chem 18:2298CrossRefGoogle Scholar
  18. 18.
    Ihara T, Miyoshi M, Ando M, Sugihara S, Iriyama Y (2001) J Mater Sci 36:4201. doi: 10.1023/A:1017929207882 CrossRefGoogle Scholar
  19. 19.
    Tojo T, Zhang QW, Saito F (2008) J Mater Sci 43:2962. doi: 10.1007/s10853-006-1472-y CrossRefGoogle Scholar
  20. 20.
    Klissurski D, Iordanova R, Radev D, Kassabov ST, Milanova M, Chakarova K (2007) J Mater Sci 39:5375. doi: 10.1023/B:JMSC.0000039248.33392.ed CrossRefGoogle Scholar
  21. 21.
    Yagodkin YD, Lileev AS, Grishina EN (2007) J Mater Sci 39:5255. doi: 10.1023/B:JMSC.0000039222.53614.e6 CrossRefGoogle Scholar
  22. 22.
    Bérardan D, Guilmeau E (2007) J Phys Condens Matter 19:236224 (9 pp)CrossRefGoogle Scholar
  23. 23.
    Singhal A, Achary SN, Manjanna J, Jayakumar OD, Kadam RM, Tyagi AK (2009) J Phys Chem C 113:3600CrossRefGoogle Scholar
  24. 24.
    Kohiki S, Murakawa Y, Hori K, Shimooka H, Tajiri T, Deguchi H, Oku M, Arai M, Mitome M, Bando Y (2005) Jpn J Appl Phys 44:L979CrossRefGoogle Scholar
  25. 25.
    Kubelka P, Munk F (1931) Z Tech Phys 12:593 (English translated by Westin S.)Google Scholar
  26. 26.
    Nath AK, Jiten C, Singh KC (2010) Physica B 405:430CrossRefGoogle Scholar
  27. 27.
    Sánchez LC, Arboleda JD, Saragovi C, Zysler RD, Barrero CA (2007) Physica B 389:145CrossRefGoogle Scholar
  28. 28.
    Sorescu M, Xu TH, Diamandescu L (2010) Mater Character 61:1103CrossRefGoogle Scholar
  29. 29.
    Khodaei M, Enayati MH, Karimzadeh F (2008) J Mater Sci 43:132. doi: 10.1007/s10853-007-2123-7 CrossRefGoogle Scholar
  30. 30.
    Wongsaenmai S, Yimnirun R, Ananta S (2007) J Mater Sci 42:3754. doi: 10.1007/s10853-006-0404-1 CrossRefGoogle Scholar
  31. 31.
    Morin FJ (1954) Phys Rev 93:1195CrossRefGoogle Scholar
  32. 32.
    Marusak LA, Messier R, White WB (1980) J Phys Chem Solids 41:981CrossRefGoogle Scholar
  33. 33.
    Dare-Edwards MP, Goodenough JB, Hamnett A, Trevellick PR (1983) J Chem Soc Faraday Trans 79:2027CrossRefGoogle Scholar
  34. 34.
    Walsh A, Silva JLD, Wei SH, Körber C, Klein A, Piper L, DeMasi A, Smith KE, Panaccione G, Torelli P, Payne DJ, Bourlange A, Egdell RG (2008) Phys Rev Lett 100:167402CrossRefGoogle Scholar
  35. 35.
    King PDC, Veal TD, Fuchs F, Wang CY, Payne DJ, Bourlange A, Zhang H, Bell GR, Cimalla V, Ambacher O, Egdell RG, Bechstedt F, McConville CF (2009) Phys Rev B 79:205211CrossRefGoogle Scholar
  36. 36.
    Thimsen E, Biswas S, Lo CS, Biswas P (2009) J Phys Chem C 113:2014CrossRefGoogle Scholar
  37. 37.
    Gilbert B, Frandsen C, Maxey ER, Sherman DM (2009) Phys Rev B 79:035108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Monica Sorescu
    • 1
  • Tianhong Xu
    • 1
  • Lucian Diamandescu
    • 2
  1. 1.Department of PhysicsDuquesne UniversityPittsburghUSA
  2. 2.National Institute of Materials PhysicsBucharestRomania

Personalised recommendations