Advertisement

Journal of Materials Science

, Volume 46, Issue 4, pp 1139–1142 | Cite as

An easy method for manufacture of gold nanoparticles on a glassy carbon surface

  • Yanli Zhou
  • Xin Zheng
  • Liangzhuan Wu
  • Jinfang Zhi
  • Maotian Xu
Letter

Introduction

Cycloaddition reactions are powerful and widely used reactions for C–C bond formation. In addition to the cycloaddition reactions in the solution phase, this reaction can also occur between the C=C bonds of alkenes molecules and the dimers of the solid surface such as Si (100) and diamond (100) to form [2 + 2] cycloaddition products [1, 2, 3]. The surface of glassy carbon (GC) is the sp2-bonded carbon and thus the [2 + 2] cycloaddition reaction is expected to occur on its surface.

On the other hand, the assembly of ordered metal nanoparticles, especially gold nanoparticles (AuNPs), on electrodes surfaces has attracted increasing interest due to its great application potentials in electroanalysis and electrocatalysis [4, 5, 6, 7, 8]. Characteristics of AuNPs such as high surface-to-volume ratio, high surface energy, and ability as electron-conducting pathways between redox molecules and electrode surfaces, have been claimed as reasons for the high electrocatalytic activity...

Keywords

Glassy Carbon Glassy Carbon Electrode Cycloaddition Reaction Allylamine Glassy Carbon Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 20775047 and 20773150), youth foundation of Shangqiu Normal University (No. 009QN08), and open foundation of Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, CAS (No. PCOM201013).

References

  1. 1.
    Liu HB, Hamers RJ (1998) Surf Sci 416:354CrossRefGoogle Scholar
  2. 2.
    Hovis JS, Liu H, Hamers RJ (1998) Surf Sci 402:1CrossRefGoogle Scholar
  3. 3.
    Wang GT, Bent SF, Russell JN Jr, Butler JE, D’Evelyn MP (2000) J Am Chem Soc 122:744CrossRefGoogle Scholar
  4. 4.
    Daniel MC, Astruc D (2004) Chem Rev 104:293CrossRefGoogle Scholar
  5. 5.
    Wang T, Shi S, Akiyama Y, Zhou LM, Kuroda S (2010) J Mater Sci 45:4539. doi: 10.1007/s10853-010-4648-4 CrossRefGoogle Scholar
  6. 6.
    Szunerits S, Boukherroub R (2008) Comptes Rendus Chimie 11:1004CrossRefGoogle Scholar
  7. 7.
    Khalid M, Wasio N, Chase T, Bandyopadhyay K (2010) Nanoscale Res Lett 5:61CrossRefGoogle Scholar
  8. 8.
    Ghica C, Ionita P (2007) J Mater Sci 42:10058. doi: 10.1007/s10853-007-1980-4 CrossRefGoogle Scholar
  9. 9.
    Annie Ho J, Chang HC, Shih NY, Wu LC, Chang YF, Chen CC, Chou C (2010) Anal Chem 82:5944CrossRefGoogle Scholar
  10. 10.
    Pingarrón JM, Yáñez-Sedeño P, González-Cortés A (2008) Eletrochim Acta 53:5848CrossRefGoogle Scholar
  11. 11.
    Zhang S, Wang N, Yu HJ, Niu YM, Sun CQ (2005) Bioelectrochem 67:15CrossRefGoogle Scholar
  12. 12.
    Henderson JI, Feng S, Ferrence GM, Bein T, Kubiak CP (1996) Inorg Chim Acta 242:115CrossRefGoogle Scholar
  13. 13.
    Harnisch JA, Pris AD, Porter MD (2001) J Am Chem Soc 123:5829CrossRefGoogle Scholar
  14. 14.
    Szunerits S, Jama C, Coffinier Y, Marcus B, Delabouglise D, Boukherroub R (2006) Electrochem Commun 8:1185CrossRefGoogle Scholar
  15. 15.
    Frens G (1973) Nat Phys Sci 241:20Google Scholar
  16. 16.
    Majid E, Hrapovic S, Liu YL, Male KB, Luong JHT (2006) Anal Chem 78:762CrossRefGoogle Scholar
  17. 17.
    Gingery D, Bühlmann P (2008) Carbon 46:1966CrossRefGoogle Scholar
  18. 18.
    Alexeyeva N, Kozlova J, Sammelselg V, Ritslaid P, Mändar H, Tammeveski K (2010) Appl Surf Sci 256:3040CrossRefGoogle Scholar
  19. 19.
    Bai HJ, Shao ML, Gou HL, Xu JJ, Chen HY (2009) Langmuir 25:10402CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ChemistryHenan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, Shangqiu Normal UniversityShangqiuChina
  2. 2.Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS)BeijingChina

Personalised recommendations