Skip to main content
Log in

The synthesis of Bi2Te3 nanobelts by vapor–liquid–solid method and their electrical transport properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Bi2Te3 nanobelts were synthesized on quartz substrates by gold-mediated vapor–liquid–solid (VLS) growth through a thermal evaporation process. The structure and morphology were characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).The temperature dependence of the conductivity of Bi2Te3 single crystal nanobelt shows a semiconductor behavior, and the activation energy was calculated as about 25 meV, indicating that the thermal activation of carriers from the impurity level dominates the transport property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huang BL, Kaviany M (2008) Phys Rev B 77:125209

    Article  Google Scholar 

  2. Mishrayz SK, Satpathyyz S, Jepsenz O (1997) J Phys Condens Matter 9:461

    Article  Google Scholar 

  3. Zhang HJ, Liu CX, Qi XL, Dai X, Fang Z, Zhang SC (2009) Nat Phys 5:439

    Google Scholar 

  4. Moore JE, Balents L (2007) Phys Rev B75:121306

    Google Scholar 

  5. Kane CL, Mele EJ (2005) Phys Rev Lett 95:146802

    Article  CAS  Google Scholar 

  6. von Klitzing K, Dorda G, Pepper M (1980) Phys Rev Lett 45:494

    Article  Google Scholar 

  7. Tsui DC, Stormer HL, Gossard AC (1982) Phys Rev Lett 48:1559

    Article  CAS  Google Scholar 

  8. Sheng DN, Weng ZY, Sheng L, Haldane FDM (2006) Phys Rev Lett 97:036808

    Article  CAS  Google Scholar 

  9. Zhou J, Jin CQ, Seol JH, Li XG, Li S (2005) Appl Phys Lett 87:133109

    Article  Google Scholar 

  10. Kim Y, Cho S, Di Venere A, Wong GKL, Ketterson JB (2001) Phys Rev B 63:155306

    Article  Google Scholar 

  11. Bos JWG, Zandbergen HW, Lee MH, Ong NP, Cava RJ (2007) Phys Rev B 75:195203

    Article  Google Scholar 

  12. Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P (2007) Adv Mater 19:1043

    Article  CAS  Google Scholar 

  13. Sales BC (2002) Science 295:1248

    Article  CAS  Google Scholar 

  14. Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Nature 413:597

    Article  CAS  Google Scholar 

  15. Bottner H, Chen G, Venkatasubramanian R (2006) MRS Bull 31:211

    Google Scholar 

  16. Prieto AL, Sander MS, Martin-Gonzalez M, Gronsky R, Sands T, Stacy AM (2001) J Am Chem Soc 123:7160

    Article  CAS  Google Scholar 

  17. Sander MS, Prieto AL, Gronsky R, Sands T, Stacy AM (2002) Adv Mater 14:665

    Article  CAS  Google Scholar 

  18. Sander MS, Gronsky R, Sands T, Stacy AM (2003) Chem Mater 15:335

    Article  CAS  Google Scholar 

  19. Zhao XB, Ji XH, Zhang YH, Zhu TJ, Tu JP, Zhang XB (2005) Appl Phys Lett 6:86

    Google Scholar 

  20. Xiao F, Yoo B, Lee KH, Myung NV (2007) J Am Chem Soc 129:10068

    Article  CAS  Google Scholar 

  21. Rowe D (2006) Thermoelectrics handbook: macro to nano. Taylor & Francis, New York

    Google Scholar 

  22. Das V, Soundararajan N (1988) Phys Rev B37:4552

    Google Scholar 

  23. Jones P (2006) Int Conf Thermoelectr 69:3

    Google Scholar 

  24. Nassary MM, Shaban HT, El-Sadek MS (2009) Mater Chem Phys 113:385

    Article  CAS  Google Scholar 

  25. Bejenari I, Kantser V (2008) Phys Rev B 78:115322

    Article  Google Scholar 

  26. Huang BL, Kaviany M (2008) Phys Rev B 77:125209

    Article  Google Scholar 

  27. Nassary MM, Shaban HT, El-Sadek MS (2009) Mater Chem Phys 113:385

    Article  CAS  Google Scholar 

  28. Liu X, Li C, Han S, Han J, Zhou C (2003) Appl Phys Lett 82:1950

    Article  CAS  Google Scholar 

  29. Zhou C, Kong J, Dai H (2000) Appl Phys Lett 76:1597

    Article  CAS  Google Scholar 

  30. Shen GZ, Chen PC, Bando Y, Golberg D, Zhou CW (2008) Chem Mater 20:7323

    Google Scholar 

Download references

Acknowledgement

This work was financially supported by the state key program for basic research of China under the Grant No. 2007CB935401.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. G. Liu or J. Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Q., Su, Y., Yang, C.J. et al. The synthesis of Bi2Te3 nanobelts by vapor–liquid–solid method and their electrical transport properties. J Mater Sci 46, 2267–2272 (2011). https://doi.org/10.1007/s10853-010-5066-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5066-3

Keywords

Navigation