Journal of Materials Science

, Volume 46, Issue 7, pp 2267–2272 | Cite as

The synthesis of Bi2Te3 nanobelts by vapor–liquid–solid method and their electrical transport properties



Bi2Te3 nanobelts were synthesized on quartz substrates by gold-mediated vapor–liquid–solid (VLS) growth through a thermal evaporation process. The structure and morphology were characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).The temperature dependence of the conductivity of Bi2Te3 single crystal nanobelt shows a semiconductor behavior, and the activation energy was calculated as about 25 meV, indicating that the thermal activation of carriers from the impurity level dominates the transport property.


High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Bi2Te3 Topological Insulator High Resolution Transmission Electron Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the state key program for basic research of China under the Grant No. 2007CB935401.


  1. 1.
    Huang BL, Kaviany M (2008) Phys Rev B 77:125209CrossRefGoogle Scholar
  2. 2.
    Mishrayz SK, Satpathyyz S, Jepsenz O (1997) J Phys Condens Matter 9:461CrossRefGoogle Scholar
  3. 3.
    Zhang HJ, Liu CX, Qi XL, Dai X, Fang Z, Zhang SC (2009) Nat Phys 5:439Google Scholar
  4. 4.
    Moore JE, Balents L (2007) Phys Rev B75:121306Google Scholar
  5. 5.
    Kane CL, Mele EJ (2005) Phys Rev Lett 95:146802CrossRefGoogle Scholar
  6. 6.
    von Klitzing K, Dorda G, Pepper M (1980) Phys Rev Lett 45:494CrossRefGoogle Scholar
  7. 7.
    Tsui DC, Stormer HL, Gossard AC (1982) Phys Rev Lett 48:1559CrossRefGoogle Scholar
  8. 8.
    Sheng DN, Weng ZY, Sheng L, Haldane FDM (2006) Phys Rev Lett 97:036808CrossRefGoogle Scholar
  9. 9.
    Zhou J, Jin CQ, Seol JH, Li XG, Li S (2005) Appl Phys Lett 87:133109CrossRefGoogle Scholar
  10. 10.
    Kim Y, Cho S, Di Venere A, Wong GKL, Ketterson JB (2001) Phys Rev B 63:155306CrossRefGoogle Scholar
  11. 11.
    Bos JWG, Zandbergen HW, Lee MH, Ong NP, Cava RJ (2007) Phys Rev B 75:195203CrossRefGoogle Scholar
  12. 12.
    Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P (2007) Adv Mater 19:1043CrossRefGoogle Scholar
  13. 13.
    Sales BC (2002) Science 295:1248CrossRefGoogle Scholar
  14. 14.
    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Nature 413:597CrossRefGoogle Scholar
  15. 15.
    Bottner H, Chen G, Venkatasubramanian R (2006) MRS Bull 31:211Google Scholar
  16. 16.
    Prieto AL, Sander MS, Martin-Gonzalez M, Gronsky R, Sands T, Stacy AM (2001) J Am Chem Soc 123:7160CrossRefGoogle Scholar
  17. 17.
    Sander MS, Prieto AL, Gronsky R, Sands T, Stacy AM (2002) Adv Mater 14:665CrossRefGoogle Scholar
  18. 18.
    Sander MS, Gronsky R, Sands T, Stacy AM (2003) Chem Mater 15:335CrossRefGoogle Scholar
  19. 19.
    Zhao XB, Ji XH, Zhang YH, Zhu TJ, Tu JP, Zhang XB (2005) Appl Phys Lett 6:86Google Scholar
  20. 20.
    Xiao F, Yoo B, Lee KH, Myung NV (2007) J Am Chem Soc 129:10068CrossRefGoogle Scholar
  21. 21.
    Rowe D (2006) Thermoelectrics handbook: macro to nano. Taylor & Francis, New YorkGoogle Scholar
  22. 22.
    Das V, Soundararajan N (1988) Phys Rev B37:4552Google Scholar
  23. 23.
    Jones P (2006) Int Conf Thermoelectr 69:3Google Scholar
  24. 24.
    Nassary MM, Shaban HT, El-Sadek MS (2009) Mater Chem Phys 113:385CrossRefGoogle Scholar
  25. 25.
    Bejenari I, Kantser V (2008) Phys Rev B 78:115322CrossRefGoogle Scholar
  26. 26.
    Huang BL, Kaviany M (2008) Phys Rev B 77:125209CrossRefGoogle Scholar
  27. 27.
    Nassary MM, Shaban HT, El-Sadek MS (2009) Mater Chem Phys 113:385CrossRefGoogle Scholar
  28. 28.
    Liu X, Li C, Han S, Han J, Zhou C (2003) Appl Phys Lett 82:1950CrossRefGoogle Scholar
  29. 29.
    Zhou C, Kong J, Dai H (2000) Appl Phys Lett 76:1597CrossRefGoogle Scholar
  30. 30.
    Shen GZ, Chen PC, Bando Y, Golberg D, Zhou CW (2008) Chem Mater 20:7323Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.National Laboratory of Solid State Microstructures and Department of Materials Science and EngineeringNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations