Skip to main content
Log in

Structural and electrical properties of Ba(Sb1/2Nb1/2)O3 ceramic

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lead-free perovskite Ba(Sb1/2Nb1/2)O3 was prepared by conventional ceramic fabrication technique at 1200 °C/5 h in air atmosphere. The crystal symmetry, space group and unit cell dimensions were determined from the experimental results using FullProf software whereas crystallite size and lattice strain were estimated from Williamson–Hall approach. XRD analysis of the compound indicated the formation of a single-phase monoclinic structure with the space group P2/m. EDAX and SEM studies were carried out to evaluate the quality and purity of the compound. Dielectric study revealed the frequency-dependent dielectric anomaly. To find a correlation between the response of the real system and idealized model circuit composed of discrete electrical components, the model fittings were presented using the impedance data. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in Ba(Sb1/2Nb1/2)O3. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy of the compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Reaney IM, Petzelt J, Voitsekhovskii VV, Chu F, Setter N (1994) J Appl Phys 76:2086

    Article  CAS  Google Scholar 

  2. Saha S, Sinha TP (2002) J Phys Condens Matter 14:249

    Article  CAS  Google Scholar 

  3. Raevski IP, Prosandeev SA, Bogatin AS, Malitskya MA, Jastrabik L (2003) J Appl Phys 93:4130

    Article  CAS  Google Scholar 

  4. Chung C-Y, Chang Y-H, Chen G-J (2004) J Appl Phys 96:6624

    Article  CAS  Google Scholar 

  5. Wang Z, Chen XM, Ni L, Liu XQ (2007) Appl Phys Lett 90:022904

    Article  Google Scholar 

  6. Bhagat S, Prasad K (2010) Phys Status Solidi A 207:1232

    CAS  Google Scholar 

  7. Dutta A, Sinha TP (2006) J Phys Chem Solids 67:1484

    Article  CAS  Google Scholar 

  8. Prasad K, Chandra KP, Bhagat S, Choudhary SN, Kulkarni AR (2010) J Am Ceram Soc 93:190

    Article  CAS  Google Scholar 

  9. Prasad K, Bhagat S, Amarnath K, Choudhary SN, Yadav KL (2009) Phys Status Solidi A 206:316

    Article  CAS  Google Scholar 

  10. Prasad K, Bhagat S, Amarnath K, Choudhary SN, Yadav KL (2010) Mater Sci Pol 28:317

    Google Scholar 

  11. Jones FG, Randall CA, Jang SJ, Shrout TR (1990) Ferroelectr Lett 12:55

    Article  CAS  Google Scholar 

  12. Raibagkar LJ, Bajaj SB (1998) Solid State Ion 108:105

    Article  CAS  Google Scholar 

  13. Prasad K, Bhagat S, Priyanka, Amarnath K, Chandra KP, Kulkarni AR (2010) Phys B Condens Matter 405:3564

    Article  CAS  Google Scholar 

  14. Prasad K, Amar Nath K, Bhagat S, Priyanka, Chandra KP, Kulkarni AR (2010) Adv Appl Ceram 109:225

    Article  CAS  Google Scholar 

  15. Jung W-H, Lee J-H, Sohn J-H, Nam H-D, Cho S-H (2002) Mater Lett 56:334

    CAS  Google Scholar 

  16. Prasad K, Kumari K, Lily, Chandra KP, Yadav KL, Sen S (2007) Adv Appl Ceram 106:241

    Article  CAS  Google Scholar 

  17. Prasad K, Lily, Kumari K, Chandra KP, Yadav KL, Sen S (2007) Appl Phys A 88:377

    Article  CAS  Google Scholar 

  18. Roisnel J, Rodriguez-Carvajal J (2000) Winplotr; Laboratoire Léon Brillouin (CEA-CNRS) Centre d’Etudes de Saclay: Gif sur Yvette Cedex, France

  19. Rodriguez-Carvajal J, FullProf (2000) A Rietveld Refinement and Pattern Matching Analysis Program (Version: April 2008), Laboratoire Léon Brillouin (CEA-CNRS), France

  20. Sharma GD, Roy M, Roy MS (2003) Mater Sci Eng B 104:15

    Article  Google Scholar 

  21. Mollah S, Som KK, Bose K, Chaudri BK (1993) J Appl Phys 74:931

    Article  CAS  Google Scholar 

  22. Salam R (1990) Phys Status Solidi A 117:535

    Article  CAS  Google Scholar 

  23. Mccusker LB, Von Dreele RB, Cox DE, Louër D, Scardi P (1999) J Appl Crystallogr 32:36

    Article  CAS  Google Scholar 

  24. Macdonald JR (ed) (1987) Impedance spectroscopy emphasizing solid materials and systems. Wiley, New York

    Google Scholar 

  25. Boukamp BA (2004) Solid State Ion 169:65

    Article  CAS  Google Scholar 

  26. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy theory, experiment and applications, 2nd edn. Wiley-Interscience, Wiley, New Jersy

  27. Prasad K, Suman CK, Choudhary RNP (2006) Adv Appl Ceram 105:258

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Defense Research and Development Organization, New Delhi under Grant No. ERIP/ER/0605044/M/01/928.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, K., Chandra, K.P., Priyanka et al. Structural and electrical properties of Ba(Sb1/2Nb1/2)O3 ceramic. J Mater Sci 46, 2077–2084 (2011). https://doi.org/10.1007/s10853-010-5041-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5041-z

Keywords

Navigation