Journal of Materials Science

, Volume 46, Issue 7, pp 2077–2084 | Cite as

Structural and electrical properties of Ba(Sb1/2Nb1/2)O3 ceramic

  • K. Prasad
  • K. P. Chandra
  • Priyanka
  • A. R. Kulkarni


Lead-free perovskite Ba(Sb1/2Nb1/2)O3 was prepared by conventional ceramic fabrication technique at 1200 °C/5 h in air atmosphere. The crystal symmetry, space group and unit cell dimensions were determined from the experimental results using FullProf software whereas crystallite size and lattice strain were estimated from Williamson–Hall approach. XRD analysis of the compound indicated the formation of a single-phase monoclinic structure with the space group P2/m. EDAX and SEM studies were carried out to evaluate the quality and purity of the compound. Dielectric study revealed the frequency-dependent dielectric anomaly. To find a correlation between the response of the real system and idealized model circuit composed of discrete electrical components, the model fittings were presented using the impedance data. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in Ba(Sb1/2Nb1/2)O3. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy of the compound.


EDAX Pattern Conventional Ceramic Fabrication Technique Scale Data Point Large Planar Electrode Argand Plane Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by Defense Research and Development Organization, New Delhi under Grant No. ERIP/ER/0605044/M/01/928.


  1. 1.
    Reaney IM, Petzelt J, Voitsekhovskii VV, Chu F, Setter N (1994) J Appl Phys 76:2086CrossRefGoogle Scholar
  2. 2.
    Saha S, Sinha TP (2002) J Phys Condens Matter 14:249CrossRefGoogle Scholar
  3. 3.
    Raevski IP, Prosandeev SA, Bogatin AS, Malitskya MA, Jastrabik L (2003) J Appl Phys 93:4130CrossRefGoogle Scholar
  4. 4.
    Chung C-Y, Chang Y-H, Chen G-J (2004) J Appl Phys 96:6624CrossRefGoogle Scholar
  5. 5.
    Wang Z, Chen XM, Ni L, Liu XQ (2007) Appl Phys Lett 90:022904CrossRefGoogle Scholar
  6. 6.
    Bhagat S, Prasad K (2010) Phys Status Solidi A 207:1232Google Scholar
  7. 7.
    Dutta A, Sinha TP (2006) J Phys Chem Solids 67:1484CrossRefGoogle Scholar
  8. 8.
    Prasad K, Chandra KP, Bhagat S, Choudhary SN, Kulkarni AR (2010) J Am Ceram Soc 93:190CrossRefGoogle Scholar
  9. 9.
    Prasad K, Bhagat S, Amarnath K, Choudhary SN, Yadav KL (2009) Phys Status Solidi A 206:316CrossRefGoogle Scholar
  10. 10.
    Prasad K, Bhagat S, Amarnath K, Choudhary SN, Yadav KL (2010) Mater Sci Pol 28:317Google Scholar
  11. 11.
    Jones FG, Randall CA, Jang SJ, Shrout TR (1990) Ferroelectr Lett 12:55CrossRefGoogle Scholar
  12. 12.
    Raibagkar LJ, Bajaj SB (1998) Solid State Ion 108:105CrossRefGoogle Scholar
  13. 13.
    Prasad K, Bhagat S, Priyanka, Amarnath K, Chandra KP, Kulkarni AR (2010) Phys B Condens Matter 405:3564CrossRefGoogle Scholar
  14. 14.
    Prasad K, Amar Nath K, Bhagat S, Priyanka, Chandra KP, Kulkarni AR (2010) Adv Appl Ceram 109:225CrossRefGoogle Scholar
  15. 15.
    Jung W-H, Lee J-H, Sohn J-H, Nam H-D, Cho S-H (2002) Mater Lett 56:334Google Scholar
  16. 16.
    Prasad K, Kumari K, Lily, Chandra KP, Yadav KL, Sen S (2007) Adv Appl Ceram 106:241CrossRefGoogle Scholar
  17. 17.
    Prasad K, Lily, Kumari K, Chandra KP, Yadav KL, Sen S (2007) Appl Phys A 88:377CrossRefGoogle Scholar
  18. 18.
    Roisnel J, Rodriguez-Carvajal J (2000) Winplotr; Laboratoire Léon Brillouin (CEA-CNRS) Centre d’Etudes de Saclay: Gif sur Yvette Cedex, FranceGoogle Scholar
  19. 19.
    Rodriguez-Carvajal J, FullProf (2000) A Rietveld Refinement and Pattern Matching Analysis Program (Version: April 2008), Laboratoire Léon Brillouin (CEA-CNRS), FranceGoogle Scholar
  20. 20.
    Sharma GD, Roy M, Roy MS (2003) Mater Sci Eng B 104:15CrossRefGoogle Scholar
  21. 21.
    Mollah S, Som KK, Bose K, Chaudri BK (1993) J Appl Phys 74:931CrossRefGoogle Scholar
  22. 22.
    Salam R (1990) Phys Status Solidi A 117:535CrossRefGoogle Scholar
  23. 23.
    Mccusker LB, Von Dreele RB, Cox DE, Louër D, Scardi P (1999) J Appl Crystallogr 32:36CrossRefGoogle Scholar
  24. 24.
    Macdonald JR (ed) (1987) Impedance spectroscopy emphasizing solid materials and systems. Wiley, New YorkGoogle Scholar
  25. 25.
    Boukamp BA (2004) Solid State Ion 169:65CrossRefGoogle Scholar
  26. 26.
    Barsoukov E, Macdonald JR (2005) Impedance spectroscopy theory, experiment and applications, 2nd edn. Wiley-Interscience, Wiley, New JersyGoogle Scholar
  27. 27.
    Prasad K, Suman CK, Choudhary RNP (2006) Adv Appl Ceram 105:258CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • K. Prasad
    • 1
  • K. P. Chandra
    • 2
  • Priyanka
    • 1
  • A. R. Kulkarni
    • 3
  1. 1.Materials Research Laboratory, University Department of PhysicsT.M. Bhagalpur UniversityBhagalpurIndia
  2. 2.Department of PhysicsS.M. CollegeBhagalpurIndia
  3. 3.Department of Metallurgical Engineering and Materials ScienceIndian Institute of TechnologyMumbaiIndia

Personalised recommendations