Journal of Materials Science

, Volume 46, Issue 3, pp 590–597 | Cite as

Kinetics of fly ash leaching in strongly alkaline solutions

  • Chen Chen
  • Weiliang Gong
  • Werner Lutze
  • Ian L. Pegg
  • Jianping Zhai


We have leached fly ash samples from six power stations in potassium hydroxide solutions at a water-to-solid mass ratio of 40 g/g. A wet chemical method was developed which provides for a detailed characterization of the reactivity of fly ash. The leaching process could be divided into three stages. In stage one, reaction progress measured by the relative mass of fly ash reacted (α) was controlled by the rate of glass network dissolution while very little gel formed (α < 0.1). In stage two, more gel (mainly oxides of Fe, Ca, Mg, and Ti) formed on the glass surface, and the rate of glass dissolution was limited by diffusion (0.1 < α < 0.45). In stage three, zeolite crystallized on top of the gel layer, and an aluminosilicate gel formed in situ, while diffusion continued to control reaction progress (α > 0.45). The data were modeled using a modified Jander equation and rate constants were calculated for each process. The rate constants for stage one reflect an intrinsic glass property, chemical durability, which increased linearly with increasing concentration of network formers in the glass phase of a fly ash.


Zeolite Geopolymer Relative Mass Reaction Progress Glass Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for financial support of this project from the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA). Chen Chen thanks the Chinese Overseas Fellowship Commission for financial support of his visit to VSL/CUA. The authors thank Dr. Hong Zhao, Dr. Andrew Buechele, and Dr. David McKeown (all VSL) for discussions and experimental support of this study. The authors are grateful to Dr. A. Barkatt (Department of Chemistry, CUA) for his comments and suggestions.


  1. 1.
    Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Constr Build Mater 22:1305CrossRefGoogle Scholar
  2. 2.
    Komnitsas K, Zaharaki D (2007) Miner Eng 20:1261CrossRefGoogle Scholar
  3. 3.
    Duxson P, Fernández-Jiménez A, Provis JL (2007) J Mater Science 42:2917. doi: 10.1007/s10853-006-0637-z CrossRefGoogle Scholar
  4. 4.
    Khale D, Chaudhary R (2007) J Mater Science 42:729. doi: 10.1007/s10853-006-0401-4 CrossRefGoogle Scholar
  5. 5.
    Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Mater 22:1315Google Scholar
  6. 6.
    Fernández-Jiménez A, Palomo A (2005) Cem Concr Res 35:1984CrossRefGoogle Scholar
  7. 7.
    Fernández-Jiménez A, De la Torre AG, Palomo A, López-Olmo G, Alonso M, Armanda MAG (2006) Fuel 85:1960CrossRefGoogle Scholar
  8. 8.
    Criado M, Fernández-Jiménez A, De la Torre AG, Aranda MAG, Palomo A (2007) Cem Concr Res 37:671CrossRefGoogle Scholar
  9. 9.
    van Jaarsvelt JGS, Deventer JSJ, Lukey GC (2003) Mater Lett 57:1272CrossRefGoogle Scholar
  10. 10.
    Fernández-Jiménez A, Palomo A (2003) Fuel 82:2259CrossRefGoogle Scholar
  11. 11.
    Fernández-Jiménez A, Palomo A, Sobrados I, Sans J (2006) Micropor Mesopor Mater 91:111CrossRefGoogle Scholar
  12. 12.
    Palomo A, Alonso MM, Fernández-Jiménez A (2004) J Am Ceram Soc 87:1141CrossRefGoogle Scholar
  13. 13.
    Bumrongjaroen W, Muller I, Schweitzer J, Livingston RA (2007) In: Proceedings of the 2007 world of coal ash (WOCA), Covington, 2007Google Scholar
  14. 14.
    Payá J, Borrachero M, Monzó VJ, Peris-Mora E, Amahjour F (2001) Cem Concr Res 31:41CrossRefGoogle Scholar
  15. 15.
    Shi CJ, Day RL (2000) Cem Concr Res 30:607CrossRefGoogle Scholar
  16. 16.
    Shi CJ, Day RL (2000) Cem Concr Res 30:51CrossRefGoogle Scholar
  17. 17.
    Biernacki JJ, Williams PJ, Stutzman PE (2001) ACI Mater J 98:340Google Scholar
  18. 18.
    Antiohos S, Tsimas S (2004) Cem Concr Res 34:769CrossRefGoogle Scholar
  19. 19.
    Phair JW, van Deventer JSJ (2001) Mineral Eng 14:289CrossRefGoogle Scholar
  20. 20.
    Pietersen HS, Fraay A, Bijen JM (1990) Mat Res Soc Proc Symp 176:139Google Scholar
  21. 21.
    Xu H, van Deventer JSJ (2002) Mineral Eng 15:1131CrossRefGoogle Scholar
  22. 22.
    Lee WK, van Deventer JSJ (2002) Colloid Surface A 211:49CrossRefGoogle Scholar
  23. 23.
    Buchwald A, Kaps Ch, Hohmann M (2003) In: Proceedings of the 11th international congress on the chemistry of cement (ICCC) Durban, 2003, p 1238Google Scholar
  24. 24.
    Panagiotopoulou Ch, Kontori E, Perraki Th, Kakali G (2007) J Mater Sci 42:2967. doi: 10.1007/s10853-006-0531-8 CrossRefGoogle Scholar
  25. 25.
    Mikuni A, Komatsu R, Ikeda K (2007) J Mater Sci 42:2953. doi: 10.1007/s10853-006-0530-9 CrossRefGoogle Scholar
  26. 26.
    Fernández-Jiménez A, De la Torre AG, Palomo A, López-Olmo G, Alonso M, Armanda MAG (2006) Fuel 85:625CrossRefGoogle Scholar
  27. 27.
    Sherman JD (1977) ACS Symp Ser 40:30CrossRefGoogle Scholar
  28. 28.
    Khawam A, Flanagan DR (2006) J Phys Chem B110:17315Google Scholar
  29. 29.
    Jander G (1927) Zeitschrift Anorg Allgem Chem 163:1CrossRefGoogle Scholar
  30. 30.
    Kondo R, Lee K, Diamon M (1976) J Ceram Soc (Japan) 84:573Google Scholar
  31. 31.
    Dabic P, Krstulovic R, Rusic D (2000) Cem Concr Res 30:1017CrossRefGoogle Scholar
  32. 32.
    Krstulovic R, Dabic P (2000) Cem Concr Res 30:693CrossRefGoogle Scholar
  33. 33.
    Cabrera J, Rojas MF (2001) Cem Concr Res 31:177CrossRefGoogle Scholar
  34. 34.
    Grambow B (1985) Mat Res Soc Symp Proc 44:15Google Scholar
  35. 35.
    Swaddle TW (2001) Coordin Chem Rev 219–221:665CrossRefGoogle Scholar
  36. 36.
    North MR, Swaddle TW (2000) Inorg Chem 39:2661CrossRefGoogle Scholar
  37. 37.
    Provis JL, Duxon P, van Deventer JSJ, Lukey GC (2005) Chem Eng Res Des 83:853CrossRefGoogle Scholar
  38. 38.
    Provis JL, van Deventer JSJ (2007) Chem Eng Sci 62:2309CrossRefGoogle Scholar
  39. 39.
    Weng L, Sagoe-Crentsil K (2007) J Mater Sci 42:2997. doi: 10.1007/s10853-006-0820-2 CrossRefGoogle Scholar
  40. 40.
    Sagoe-Crentsil K, Weng L (2007) J Mater Sci 42:3007. doi: 10.1007/s10853-006-0818-9 CrossRefGoogle Scholar
  41. 41.
    Strachan DM (2001) J Nucl Mater 298:69CrossRefGoogle Scholar
  42. 42.
    Barkatt AA, Gibson BC, Macedo PB, Montrose C, Sousanpour CJW, Boroomand MA, Rogers V, Penafiel M (1986) Nucl Technol 73:140Google Scholar
  43. 43.
    Lasaga AC (1981) In: Lasaga AC, Kirkpatrick RJ (eds) Kinetics of geochemical processes. Mineralogical Society of America, WashingtonGoogle Scholar
  44. 44.
    Murayama N, Yamamoto H, Shibata J (2002) Int J Miner Process 64:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Chen Chen
    • 1
    • 2
  • Weiliang Gong
    • 1
  • Werner Lutze
    • 1
  • Ian L. Pegg
    • 1
  • Jianping Zhai
    • 2
  1. 1.Vitreous State LaboratoryThe Catholic University of AmericaWashington, DCUSA
  2. 2.State Key Laboratory of Pollution Control and Resources Reuse and School of the EnvironmentNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations