Journal of Materials Science

, Volume 46, Issue 6, pp 1640–1645 | Cite as

Synthesis of manganese–zinc ferrite by powder mixing using ferric oxide from a steel mill acid recovery unit

  • S. S. Marins
  • T. Ogasawara
  • L. M. Tavares


With the aim of producing fine-grained manganese–zinc (Mn–Zn) ferrite at the end of a calcination process at moderate temperatures, this study consisted, at first, of an “electrochemically designed” powder mixing by wet-ball milling a mixture of manganese (MnO2), zinc (ZnO), and iron (Fe2O3 granules produced by an acid recovery unit of a Brazilian steelmaker, milled to fine sizes using alkaline media) –based raw materials. This mixing/milling resulted in improved size reduction when compared to milling without any alkali addition. Further, noticeable size reduction was achieved when elemental Zn was used in place of ZnO, especially when ammonia was used as the medium. Calcination of the alkaline-milled mixture of MnO2 + ZnO + Fe2O3 at 1200 °C allowed obtaining well-crystallized single-phase Mn–Zn ferrite, whereas calcination of the MnO2 + ZnO + Fe2O3 mill-mixed in 100% NH4OH at 1200 °C produced the highest saturation magnetization in the as-calcined state.


Ferrite Milling Calcination MnO2 ZnFe2O4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to CNPq, CAPES and FINEP/PADCT for the financial support to this investigation.


  1. 1.
    Negro C, Latorre R, Dfour J, Formoso A, Mateos FL (1994) J Environ Sci Health A 29(2):1899CrossRefGoogle Scholar
  2. 2.
    Beck M, Wirtz S, Scherer V, Barthold F (2007) Chem Eng Technol 30(10):1347CrossRefGoogle Scholar
  3. 3.
    Mamiya H, Terada N, Furubayashi T (2010) J Magn Magn Mater 322(9–12):1561CrossRefGoogle Scholar
  4. 4.
    Ji HN, Lan ZW, Yu Z (2009) J Magn Magn Mater 321(14):2121CrossRefGoogle Scholar
  5. 5.
    Shokrollahi H, Janghorban K (2007) Mater Sci Eng B 141:91CrossRefGoogle Scholar
  6. 6.
    Shokrollahi H (2008) J Magn Magn Mater 320:463CrossRefGoogle Scholar
  7. 7.
    Liang TJ, Nien HH, Chen JF (2007) IEEE Transac Magn 43(10):3816CrossRefGoogle Scholar
  8. 8.
    Gu M, Liu GQ (2009) J Alloys Comp 475(1–2):356CrossRefGoogle Scholar
  9. 9.
    Sun K, Lan ZW, Yu Z (2009) Mater Chem Phys 113(2–3):797CrossRefGoogle Scholar
  10. 10.
    Hanuszkiewicz J, Holz D, Eleftheriou E (2008) J Appl Phys 103(10):103907-1–103907-9CrossRefGoogle Scholar
  11. 11.
    Kosak A, Makovec D, Drofenik M, Znidarsic A (2004) J Magn Magn Mater 272–276:1542Google Scholar
  12. 12.
    Makovec D, Kosak A, Znidarsic A, Drofenik M (2005) J Magn Magn Mater 289:32CrossRefGoogle Scholar
  13. 13.
    Wang J, Chong PF, Ng SC, Gan LM (1997) Mater Lett 30:217CrossRefGoogle Scholar
  14. 14.
    Yener DO, Giesche H (2001) J Am Ceram Soc 84(9):1987CrossRefGoogle Scholar
  15. 15.
    Verma A, Chatterjee R (2006) J Magn Magn Mater 306(2):313CrossRefGoogle Scholar
  16. 16.
    Poddar P, Srikanth H, Morrison SA, Carpenter EE (2005) J Magn Magn Mater 288:443CrossRefGoogle Scholar
  17. 17.
    Arulmurugan R, Vaidyanathan G, Sendhilnathan S, Jeyadevan B (2006) J Magn Magn Mater 298:83CrossRefGoogle Scholar
  18. 18.
    Skolyszewska B, Tokarz W, Przybylski K, Kakol Z (2003) Physica C 387:290CrossRefGoogle Scholar
  19. 19.
    Arshak KI, Ajina A, Egan D (2001) Microelectron J 32:113CrossRefGoogle Scholar
  20. 20.
    Mandanas MM, Shaffer W, Adair JH (2002) J Am Ceram Soc 85(9):2156CrossRefGoogle Scholar
  21. 21.
    Mauczok R, Zaspalis VT (2000) J Eur Ceram Soc 20:2121CrossRefGoogle Scholar
  22. 22.
    Suh JJ, Han YH (2003) J Am Ceram Soc 86(5):765CrossRefGoogle Scholar
  23. 23.
    Marins SS (2006) Manganese–zinc ferrite synthesis by chemically aided milling and calcination. Ph.D. thesis, Department of Metallurgical and Materials Engineering, Universidade Federal do Rio de Janeiro, Brazil, p 154 (in Portuguese)Google Scholar
  24. 24.
    Pourbaix M (1974), Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, USA and CEBELCOR, Brussels (Belgium)Google Scholar
  25. 25.
    Maiorov M, Blums E, Hanson M, Johanson C (1999) J Magn Magn Mater 200:95CrossRefGoogle Scholar
  26. 26.
    Rozman M, Drovenik M (1998) J Am Ceram Soc 81(7):1757CrossRefGoogle Scholar
  27. 27.
    Janghorban K, Shokrollah H (2007) J Magn Magn Mater 308:238CrossRefGoogle Scholar
  28. 28.
    Lezhong L, Zhongwen L, Zhong Y, Ke S, Haining J (2007) J Magn Magn Mater 318:39CrossRefGoogle Scholar
  29. 29.
    Yapi L, Shijin H (2008) J Magn Magn Mater 320:3318CrossRefGoogle Scholar
  30. 30.
    Ke S, Zhongwen L, Zhong Y, Lezhong L, Xiaoliang N, Zhiyong X (2009) J Alloys Comp 468:315CrossRefGoogle Scholar
  31. 31.
    Haining J, Zhongwen L, Zhong Y, Ke S, Lezhong L (2009) J Magn Magn Mater 321:2121CrossRefGoogle Scholar
  32. 32.
    Ateia E, Ahmed MA, El-Aziz AK (2007) J Magn Magn Mater 311:545CrossRefGoogle Scholar
  33. 33.
    Morineau R, Paulus M (1975) IEEE Transac Magn 11:1312CrossRefGoogle Scholar
  34. 34.
    Otobe S, Yachi Y, Hashimoto T, Tanimori T, Shigenagi T, Takei H, Hontani K (1999) IEEE Transac Magn 35(5):3409CrossRefGoogle Scholar
  35. 35.
    Ming G, Gongqiang L (2009) J Alloys Comp 475:356CrossRefGoogle Scholar
  36. 36.
    Ogasawara T, Tavares LM, Marins SS (2007) Mater Lett 61:5063CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.PetrobrásRio de JaneiroBrazil
  2. 2.Department of Metallurgical and Materials EngineeringUniversidade Federal do Rio de Janeiro—COPPE/UFRJRio de JaneiroBrazil

Personalised recommendations