Journal of Materials Science

, Volume 46, Issue 5, pp 1341–1350 | Cite as

Organic solvent based TiO2 dispersion paste for dye-sensitized solar cells prepared by industrial production level procedure

  • Ryohei Mori
  • Tsutomu Ueta
  • Kazuo Sakai
  • Yasuhiro Niida
  • Yasuko Koshiba
  • Li Lei
  • Katsuhiko Nakamae
  • Yasukiyo Ueda


In order to prepare the TiO2 liquid dispersions for the electrodes of dye-sensitized solar cells with industrial mass production level at a reasonable cost, the present study investigates the preparation of TiO2 liquid dispersions by a general industrial dispersion technique using readily available P25. To determine the TiO2 dispersion offering the best light–electricity energy conversion efficiency, the suitability of various types of solvents and resins for use in TiO2 dispersion are tested. In general, organic solvent based TiO2 dispersions are found to allow the formation of more uniform thin films in comparison with water-based dispersions. A preparation using ethyl cellulose as the resin and the terpineol as the solvent is found to exhibit the best conversion efficiency. We have also found that using two kinds of resins of different molecular weights gave rise to better efficiency. Among 26 metal compounds tested in this study, the best metal dopant was Ag. XRD and XPS measurements confirm that the Ag exists as metal Ag and silver oxide.


TiO2 TiO2 Film TiO2 Particle Ethyl Cellulose TiO2 Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study has been carried out through Collaboration of Regional Entities for the Advancement of Technological Excellence (abbr. CREATE) organized by HYOGO Prefecture and funded by Japan Science and Technology Agency (abbr. JST) for development of common ground of nano-particle composite.


  1. 1.
    O`Regan B, Grätzel M (1991) Nature 353:737CrossRefGoogle Scholar
  2. 2.
    Bach U, Lupo D, Comte P, Moser JE, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M (1998) Nature 395:583CrossRefGoogle Scholar
  3. 3.
    Nazeeruddin M, Angelis F, Fantacci S, Selloni A, Viscardi G, Liska IS, Takeru B, Grätzel M (2005) J Am Chem Soc 127:16835CrossRefGoogle Scholar
  4. 4.
    Xia J, Li F, Yang H, Li X, Huang C (2005) J Mater Sci 42:6412. doi: 10.1007/s10853-006-1184-3 CrossRefGoogle Scholar
  5. 5.
    Hirata N, Lagref JJ, Palomares EJ, Durrant JR, Nazeeruddin MK, Gratzel M, Censo DD (2004) Chem Eur J 10:595CrossRefGoogle Scholar
  6. 6.
    Bignozzi CA, Argazzi R, Indelli MT, Scandora F (1994) Sol Energy Mater Sol Cells 32:229CrossRefGoogle Scholar
  7. 7.
    Argazzi R, Bignozzi CA, Heimer TA, Castellano FN, Meyer G (1994) Inorg Chem 33:5741CrossRefGoogle Scholar
  8. 8.
    Koumura N, Wang ZS, Miyashita M, Uemura Y, Sekiguchi H, Cui Y, Mori A, Mori S, Hara K (2009) J Mater Chem 27:4829CrossRefGoogle Scholar
  9. 9.
    Usami A (1997) Chem Phys Lett 277:105CrossRefGoogle Scholar
  10. 10.
    Ferber J, Luther J (1998) Sol Energy Mater Sol Cells 54:265CrossRefGoogle Scholar
  11. 11.
    Huang SY, Schlichthörl G, Nozik AJ, Grätzel M, Frank AJ (1997) J Phys Chem B 101:2576CrossRefGoogle Scholar
  12. 12.
    Nattestad A, Mozer AJ, Fischer MR, Cheng YB, Mishra A, Bauerle P, Bach U (2010) Nat Mater 9:31CrossRefGoogle Scholar
  13. 13.
    Schlichthörl G, Huang SY, Sprague J, Frank AJ (1997) J Phys Chem B 101:8141CrossRefGoogle Scholar
  14. 14.
    Snaith HJ (2010) Adv Funct Mater 20:13CrossRefGoogle Scholar
  15. 15.
    Kavan L, Grätzel M, Rathousky J, Zukal A (1996) J Electrochem Soc 143:394CrossRefGoogle Scholar
  16. 16.
    Papageorgiou N, Barbe C, Grätzel M (1998) J Phys Chem B 102:4156CrossRefGoogle Scholar
  17. 17.
    Lin B, Aydil ES (2009) J Am Chem Soc 131:3985CrossRefGoogle Scholar
  18. 18.
    Frank JA (1997) AIP conference proceedings: future generation photovoltaic technologies: proceedings of the first NREL conference. NICH Report No. 24469:145Google Scholar
  19. 19.
    Finklea HO (1998) Semiconductor electrodes. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Zhao G, Kozuka H, Lin H, Yoko T (1996) Thin Solid Films 339:123CrossRefGoogle Scholar
  21. 21.
    Zhao G, Kozuka H, Lin H, Yoko T (1996) Thin Solid Films 340:125CrossRefGoogle Scholar
  22. 22.
    Barbe CJ, Arendse F, Comte P, Jirousek M, Lezmann F, Shklover V, Grätzel M (1997) J Am Ceram Soc 80:3157CrossRefGoogle Scholar
  23. 23.
    Nakade S, Saito Y, Kubo W, Kitamura T, Wada Y, Yanagida S (2003) J Phys Chem B 107:8607CrossRefGoogle Scholar
  24. 24.
    Salvador P (1980) Sol Energy Mater 2:413CrossRefGoogle Scholar
  25. 25.
    Kutty TN, Avudaithai M (1990) Int J Hydrogen Energy 15:621CrossRefGoogle Scholar
  26. 26.
    Kikkawa J, O’Regan B, Anderson MA (1991) J Electroanal Chem 309:91CrossRefGoogle Scholar
  27. 27.
    Goodenough JB (1971) Prog Solid State Chem 5:145CrossRefGoogle Scholar
  28. 28.
    Morris D, Dou Y, Rebane J, Mitchell CJ, Egdell RG (2000) Phys Rev B 61:13445CrossRefGoogle Scholar
  29. 29.
    Ko KH, Lee YC, Jung YJ (2005) J Colloid Interface Sci 283:482CrossRefGoogle Scholar
  30. 30.
    Zhao G, Kozuka H, Yoko T (1996) Thin Solid Films 277:147CrossRefGoogle Scholar
  31. 31.
    Zhao G, Kozuka H, Yoko T (1996) Sol Energy Mater Sol Cells 277:147Google Scholar
  32. 32.
    Wen C, Ishikawa K, Kishima M, Yamada K (2000) Sol Energy Mater Sol Cells 61:339CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ryohei Mori
    • 1
  • Tsutomu Ueta
    • 1
  • Kazuo Sakai
    • 1
  • Yasuhiro Niida
    • 2
  • Yasuko Koshiba
    • 2
  • Li Lei
    • 3
  • Katsuhiko Nakamae
    • 3
  • Yasukiyo Ueda
    • 2
  1. 1.Fuji Pigment Co., LtdKawanishiJapan
  2. 2.Graduate School of Science and TechnologyKobe UniversityKobeJapan
  3. 3.Hyogo Science and Technology AssociationAkoJapan

Personalised recommendations