Journal of Materials Science

, Volume 46, Issue 4, pp 1103–1109 | Cite as

Influence of N and Fe on α-Ti precipitation in the in situ TiC–titanium alloy composites

  • G. Amirthan
  • K. Nakao
  • M. Balasubramanian
  • H. Tsuda
  • S. Mori


High strength with high ductility can be achieved in the titanium alloys by using metal precipitated ceramic particle as reinforcement. In this work, α + β or β-Ti alloy composites were prepared with α-Ti precipitated TiC particles. A series of Ti–Fe–C–N alloys were prepared and a constitutional diagram was constructed as a function of N and Fe contents. Two criteria were identified for the formation of α-Ti precipitation. One is the existence of Ti2C phase and the other is the presence of α-Ti phase in the matrix. The mechanism of α-Ti formation from the Ti2C phase is discussed.


Iron Content Alloy Composite Constitutional Diagram Fine Platelet Atomic Pair Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a Grant in aid for Scientific Research (c) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.


  1. 1.
    Boyer RR (1993) In: Eylon D, Boyer RR, Koss DA (eds) Beta titanium alloys in the 1990s. TMS, Warrendale, PAGoogle Scholar
  2. 2.
    Andoa T, Nakashima K, Tsuchiyama T, Takaki S (2008) Mater Sci Eng A 486:228CrossRefGoogle Scholar
  3. 3.
    Mantani Y, Tajima M (2006) Mater Sci Eng A 442:409CrossRefGoogle Scholar
  4. 4.
    Lutjering G (1998) Mater Sci Eng A 243:32CrossRefGoogle Scholar
  5. 5.
    Das J, Tang MB, Kim KB, Theissmann R, Baier F, Wang WH, Eckert J (2005) Phys Rev Lett 94:205CrossRefGoogle Scholar
  6. 6.
    Hays CC, Kim CP, Johnson WL (2000) Phys Rev Lett 84:2901CrossRefGoogle Scholar
  7. 7.
    Furuhara T, Ogawa T, Maki T (1995) Philos Mag 72:175CrossRefGoogle Scholar
  8. 8.
    Tsuda H, Mori H, Mastui T, Mabuchi H, Morii K (2006) In: 16th international microscopy congress, Sapporo, JapanGoogle Scholar
  9. 9.
    Das J, Kim KB, Baier F, Loser W, Gebert A, Eckert J (2007) J Alloys Compd 434:28CrossRefGoogle Scholar
  10. 10.
    Bhattacharyya D, Viswanathan GB, Denkenberger R, Furrer D, Fraser HL (2003) Acta Metall 51:4679Google Scholar
  11. 11.
    Kuroda D, Kawasaki H, Yamamoto A, Hiromoto S, Hanawa T (2005) Mater Sci Eng C25:312Google Scholar
  12. 12.
    Okamoto H (1996) J Phase Equilib 17:369CrossRefGoogle Scholar
  13. 13.
    Storms EK (1967) In: The refractory carbides, vol 2. Academic Press, LondonGoogle Scholar
  14. 14.
    Bars JP (1983) Metall Mater Trans A 14:1537CrossRefGoogle Scholar
  15. 15.
    Eibler R (2002) J Phys Condens Matter 14:4425CrossRefGoogle Scholar
  16. 16.
    Quinn CJ, Kohlstedt DL (1984) J Am Ceram Soc 67:305CrossRefGoogle Scholar
  17. 17.
    Eibler R (2007) J Phys Condens Matter 19:196CrossRefGoogle Scholar
  18. 18.
    Wriedt HA, Murray JL (1987) Bull Alloy Phase Diagr 8:378CrossRefGoogle Scholar
  19. 19.
    Poulek V, Musil J, Valvoda V, Cerny R (1988) J Phys D Appl Phys 21:1657CrossRefGoogle Scholar
  20. 20.
    Han K, Weatherly GC (1997) Philos Mag 76:247Google Scholar
  21. 21.
    Lipatnikov VN, Kottar A, Zueva LV, Gusev AI (2000) Inorg Mater 36:155CrossRefGoogle Scholar
  22. 22.
    Gusev AI, Rempel AA (1997) Phys Status Solidi A 163:273CrossRefGoogle Scholar
  23. 23.
    Gusev AI (1989) Philos Mag B 60:307Google Scholar
  24. 24.
    Guemmaz M, Mosser A (1997) Appl Phys A 64:407CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • G. Amirthan
    • 1
    • 2
  • K. Nakao
    • 2
  • M. Balasubramanian
    • 1
  • H. Tsuda
    • 2
  • S. Mori
    • 2
  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Materials Science, Graduate School of EngineeringOsaka Prefecture UniversityOsakaJapan

Personalised recommendations