Journal of Materials Science

, Volume 46, Issue 4, pp 1103–1109 | Cite as

Influence of N and Fe on α-Ti precipitation in the in situ TiC–titanium alloy composites

  • G. Amirthan
  • K. Nakao
  • M. Balasubramanian
  • H. Tsuda
  • S. Mori


High strength with high ductility can be achieved in the titanium alloys by using metal precipitated ceramic particle as reinforcement. In this work, α + β or β-Ti alloy composites were prepared with α-Ti precipitated TiC particles. A series of Ti–Fe–C–N alloys were prepared and a constitutional diagram was constructed as a function of N and Fe contents. Two criteria were identified for the formation of α-Ti precipitation. One is the existence of Ti2C phase and the other is the presence of α-Ti phase in the matrix. The mechanism of α-Ti formation from the Ti2C phase is discussed.


Iron Content Alloy Composite Constitutional Diagram Fine Platelet Atomic Pair Correlation 



This work was supported by a Grant in aid for Scientific Research (c) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.


  1. 1.
    Boyer RR (1993) In: Eylon D, Boyer RR, Koss DA (eds) Beta titanium alloys in the 1990s. TMS, Warrendale, PAGoogle Scholar
  2. 2.
    Andoa T, Nakashima K, Tsuchiyama T, Takaki S (2008) Mater Sci Eng A 486:228CrossRefGoogle Scholar
  3. 3.
    Mantani Y, Tajima M (2006) Mater Sci Eng A 442:409CrossRefGoogle Scholar
  4. 4.
    Lutjering G (1998) Mater Sci Eng A 243:32CrossRefGoogle Scholar
  5. 5.
    Das J, Tang MB, Kim KB, Theissmann R, Baier F, Wang WH, Eckert J (2005) Phys Rev Lett 94:205CrossRefGoogle Scholar
  6. 6.
    Hays CC, Kim CP, Johnson WL (2000) Phys Rev Lett 84:2901CrossRefGoogle Scholar
  7. 7.
    Furuhara T, Ogawa T, Maki T (1995) Philos Mag 72:175CrossRefGoogle Scholar
  8. 8.
    Tsuda H, Mori H, Mastui T, Mabuchi H, Morii K (2006) In: 16th international microscopy congress, Sapporo, JapanGoogle Scholar
  9. 9.
    Das J, Kim KB, Baier F, Loser W, Gebert A, Eckert J (2007) J Alloys Compd 434:28CrossRefGoogle Scholar
  10. 10.
    Bhattacharyya D, Viswanathan GB, Denkenberger R, Furrer D, Fraser HL (2003) Acta Metall 51:4679Google Scholar
  11. 11.
    Kuroda D, Kawasaki H, Yamamoto A, Hiromoto S, Hanawa T (2005) Mater Sci Eng C25:312Google Scholar
  12. 12.
    Okamoto H (1996) J Phase Equilib 17:369CrossRefGoogle Scholar
  13. 13.
    Storms EK (1967) In: The refractory carbides, vol 2. Academic Press, LondonGoogle Scholar
  14. 14.
    Bars JP (1983) Metall Mater Trans A 14:1537CrossRefGoogle Scholar
  15. 15.
    Eibler R (2002) J Phys Condens Matter 14:4425CrossRefGoogle Scholar
  16. 16.
    Quinn CJ, Kohlstedt DL (1984) J Am Ceram Soc 67:305CrossRefGoogle Scholar
  17. 17.
    Eibler R (2007) J Phys Condens Matter 19:196CrossRefGoogle Scholar
  18. 18.
    Wriedt HA, Murray JL (1987) Bull Alloy Phase Diagr 8:378CrossRefGoogle Scholar
  19. 19.
    Poulek V, Musil J, Valvoda V, Cerny R (1988) J Phys D Appl Phys 21:1657CrossRefGoogle Scholar
  20. 20.
    Han K, Weatherly GC (1997) Philos Mag 76:247Google Scholar
  21. 21.
    Lipatnikov VN, Kottar A, Zueva LV, Gusev AI (2000) Inorg Mater 36:155CrossRefGoogle Scholar
  22. 22.
    Gusev AI, Rempel AA (1997) Phys Status Solidi A 163:273CrossRefGoogle Scholar
  23. 23.
    Gusev AI (1989) Philos Mag B 60:307Google Scholar
  24. 24.
    Guemmaz M, Mosser A (1997) Appl Phys A 64:407CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • G. Amirthan
    • 1
    • 2
  • K. Nakao
    • 2
  • M. Balasubramanian
    • 1
  • H. Tsuda
    • 2
  • S. Mori
    • 2
  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Materials Science, Graduate School of EngineeringOsaka Prefecture UniversityOsakaJapan

Personalised recommendations