Advertisement

Journal of Materials Science

, Volume 46, Issue 4, pp 1053–1057 | Cite as

Temperature dependence of ferroelectric and dielectric properties of textured 0.98(0.94Na0.5Bi0.5TiO3–0.06BaTiO3)–0.02K0.5Na0.5NbO3 thick film

  • Fang Fu
  • Jiwei Zhai
  • Zhengkui Xu
  • Chenggen Ye
  • Xi Yao
Article

Abstract

Textured 0.98(0.94Na0.5Bi0.5TiO3–0.06BaTiO3)–0.02K0.5Na0.5NbO3 thick film was prepared by reactive templated grain growth (RTGG) method. The effect of temperature on ferroelectric and dielectric behaviors of the thick film was investigated. Its dielectric constant as a function of temperature displayed typical relaxation behavior, which was similar to that of NBT-based bulk ceramics. Remnant polarization, saturation polarization, and coercive field of the thick film all decreased with increasing temperature. Dielectric constant and tunability of the film were also dependent on temperature. Electric field dependence of dielectric constant of the thick film suggested a transition from ferroelectric to antiferroelectric phase at around the depolarization temperature. A strong increase in leakage current density with increasing temperature was observed, which could be related to the enhanced activity of conductivity carriers.

Keywords

Dielectric Constant Thick Film Loss Tangent Leakage Current Density Domain Switching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge the support from the National Natural Science Foundation of China under grant No. 50972108, 50932007 and Shanghai Foundation Project under grant 08JC1419100. It was also partially supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (CityU No. 103307).

References

  1. 1.
    Pu Z, Wu J, Yu X, Xu P, Cheng L, Xiao D, Zhu J (2008) Surf Coat Technol 202:2068CrossRefGoogle Scholar
  2. 2.
    Ursic H, Hrovat M, Belavic D, Cilensek J, Drnovsek S, Holc J, Zarnik M, Kosec M (2008) J Eur Ceram Soc 28:1839CrossRefGoogle Scholar
  3. 3.
    Kuscer D, Skalar M, Holc J, Kosec M (2009) J Eur Ceram Soc 29:105CrossRefGoogle Scholar
  4. 4.
    Lin D, Kwok KW, Chan HLW (2008) Solid State Ionics 178:1930Google Scholar
  5. 5.
    Zuo R, Ye C, Fang X, Li J (2008) J Eur Ceram Soc 28:871CrossRefGoogle Scholar
  6. 6.
    Takenaka T, Maruyama K, Sakata K (1991) Jpn J Appl Phys 30:2236CrossRefGoogle Scholar
  7. 7.
    Nagata H, Takenak T (1997) Jpn J Appl Phys Part 1 36:6055Google Scholar
  8. 8.
    Zhang S, Koung AB, Aulbach E, Ehrenberg H, Rödel J (2007) Appl Phys Lett 91:112906CrossRefGoogle Scholar
  9. 9.
    Zhang H, Jiang S (2009) J Eur Ceram Soc 29:717CrossRefGoogle Scholar
  10. 10.
    Osone S, Brinkman K, Shimojo Y, Iijima T (2008) Thin Solid Films 516:4325CrossRefGoogle Scholar
  11. 11.
    Dimos D, Al-Shareef HN, Warren WL, Tuttule BA (1996) J Appl Phys 80:1682CrossRefGoogle Scholar
  12. 12.
    Dawber M, Scott JF (2000) Appl Phys Lett 76:1060CrossRefGoogle Scholar
  13. 13.
    Noguchi Y, Miyayama M (2001) Appl Phys Lett 78:1903CrossRefGoogle Scholar
  14. 14.
    Desu SB (1995) Phys Status Solidif A 151:467CrossRefGoogle Scholar
  15. 15.
    Brennan C (1993) Ferroelectrics 150:199Google Scholar
  16. 16.
    Fujimura N, Nishihara T, Goto S, Xu J, Ito T (1993) J Cryst Growth 130:269CrossRefGoogle Scholar
  17. 17.
    Sasaki A, Chiba T, Mamiya Y, Otsuki E (1999) Jpn J Appl Phys 38:5564CrossRefGoogle Scholar
  18. 18.
    Lin D, Xiao D, Zhu J, Yu P (2006) Appl Phys Lett 88:062901CrossRefGoogle Scholar
  19. 19.
    Uchino K, Nomura S (1982) Ferroelectric Lett Sect 44:55CrossRefGoogle Scholar
  20. 20.
    Hagh NM, Kerman K, Jadidian B, Safari A (2009) J Am Ceram Soc 29:2325CrossRefGoogle Scholar
  21. 21.
    Zhang S, Chen Z, Zhang C, Yuan G (2010) Appl Surf Sci 256:2468CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Fang Fu
    • 1
  • Jiwei Zhai
    • 1
  • Zhengkui Xu
    • 2
  • Chenggen Ye
    • 1
  • Xi Yao
    • 1
  1. 1.Functional Materials Research LaboratoryTongji UniversityShanghaiChina
  2. 2.Department of Physics and Materials ScienceCity University of Hong KongKowloonHong Kong

Personalised recommendations