Journal of Materials Science

, Volume 46, Issue 4, pp 999–1006 | Cite as

Influence of sintering atmosphere on the microstructure and water durability of SnO–MgO–P2O5 glass

  • Jiin-Jyh Shyu
  • Chih-Hsien Yeh


Effects of sintering atmosphere (Ar, air, and O2) on the sinterability and crystallization at 380–470 °C of 60SnO, 10MgO, 30P2O5 (mol%) glass powder, and the water durability of the sintered glass were investigated. Increasing the oxygen partial pressure \( (P_{{{\text{O}}_{2} }} ) \) in the sintering atmosphere enhanced the oxidation tendency of Sn2+ to Sn4+ near the surface region of the glass particles. Therefore, the glass viscosity was increased, resulting in the increase in both the temperature of densification and the temperature at which crystalline phases developed. Phase assemblage and the amounts of crystalline phases were also affected by \( P_{{{\text{O}}_{2} }} . \) The water durability of the sintered glasses is discussed in terms of the above microstructural parameters.


Sinter Temperature Phosphate Glass Glass Powder Phase Assemblage Sintered Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Tatung University under Contract No. B97-T10-010. It was also supported by the National Science Council of the Republic of China under Contract No. NSC 97-2221-E-036-005.


  1. 1.
    Liang W, Cheng J (2001) Am Ceram Soc Bull 80:62Google Scholar
  2. 2.
    Campbell JH, Suratwala TI (2000) J Non-Cryst Solids 263–264:318CrossRefGoogle Scholar
  3. 3.
    Takebe H, Nonaka W, Kubo T, Cha J, Kuwabara M (2007) J Phys Chem Solids 68:983CrossRefGoogle Scholar
  4. 4.
    Day DE, Wu Z, Ray CS, Hrma P (1998) J Non-Cryst Solids 241:1CrossRefGoogle Scholar
  5. 5.
    Brow RK (2000) J Non-Cryst Solids 263–264:1CrossRefGoogle Scholar
  6. 6.
    Morena R (2000) J Non-Cryst Solids 263–264:382CrossRefGoogle Scholar
  7. 7.
    Brow RK, Tallant DR (1997) J Non-Cryst Solids 222:396Google Scholar
  8. 8.
    Morinaga K, Fujino S (2001) J Non-Cryst Solids 282:118CrossRefGoogle Scholar
  9. 9.
    Shaw CM, Shelby JE (1988) Phys Chem Glasses 29:49Google Scholar
  10. 10.
    Bunker BC, Arnold GW, Rajaram M, Day DE (1987) J Am Ceram Soc 70:425CrossRefGoogle Scholar
  11. 11.
    Marino AE, Arrasmith SR, Gregg LL, Jacobs SD, Chen G, Duc Y (2001) J Non-Cryst Solids 289:37CrossRefGoogle Scholar
  12. 12.
    Peng YB, Day DE (1991) Glass Technol 32:166Google Scholar
  13. 13.
    Shih PY (2002) J Mater Sci Lett 21:1153CrossRefGoogle Scholar
  14. 14.
    Tick PA (1984) Phys Chem Glasses 25:149Google Scholar
  15. 15.
    Pascual L, Durán A (1996) Mater Res Bull 31:77CrossRefGoogle Scholar
  16. 16.
    Sauze AL, Marchand R (2000) J Non-Cryst Solids 263–264:285CrossRefGoogle Scholar
  17. 17.
    Yung H, Shih PY, Liu HS, Chin TS (1997) J Am Ceram Soc 80:2213CrossRefGoogle Scholar
  18. 18.
    Donald IW (1993) J Mater Sci 28:2841. doi: 10.1007/BF01117591 CrossRefGoogle Scholar
  19. 19.
    Shaw CM, Shelby JE (1988) J Am Ceram Soc 71:252CrossRefGoogle Scholar
  20. 20.
    Shih PY, Yung SW, Chen CY, Liu HS, Chin TS (1997) Mater Chem Phys 50:63CrossRefGoogle Scholar
  21. 21.
    Ding JY, Shih PY, Yung SW, Hsu KL, Chin TS (2003) Mater Chem Phys 82:61CrossRefGoogle Scholar
  22. 22.
    Cha J, Kubo T, Takebe H, Kuwabara M (2008) J Ceram Soc Jpn 116:915CrossRefGoogle Scholar
  23. 23.
    Xu XJ, Day DE (1990) Phys Chem Glasses 31:183Google Scholar
  24. 24.
    Tick PA (1983) US Patent 4,379,070Google Scholar
  25. 25.
    Morena R (1996) US Patent 5,514,629Google Scholar
  26. 26.
    Morena R (1996) US Patent 5,516,733Google Scholar
  27. 27.
    Morena R (2000) US Patent 6,048,811Google Scholar
  28. 28.
    Yamanka T (2003) US Patent 6,617,269Google Scholar
  29. 29.
    Taketami K (2003) JP 2003/252648Google Scholar
  30. 30.
    Shyu JJ, Yeh CH (2007) J Mater Sci 42:4772. doi: 10.1007/s10853-006-0766-4 CrossRefGoogle Scholar
  31. 31.
    Shyu JJ, Yeh CH (2009) J Mater Sci 44:2985. doi: 10.1007/s10853-009-3396-9 CrossRefGoogle Scholar
  32. 32.
    Sears A, Hölland D, Dowsett MG (2000) Phys Chem Glasses 41:42Google Scholar
  33. 33.
    Bekaert É, Montagne L, Delevoye L, Palavit G, Revel B (2004) C R Chimie 7:377CrossRefGoogle Scholar
  34. 34.
    Hölland D, Smith ME, Poplett IJF, Johnson JA (2001) J Non-Cryst Solids 293–295:175CrossRefGoogle Scholar
  35. 35.
    Nishida T, Katada M, Osawa N, Sato R, Komatsu T, Matusita K (1994) Hyper Interact 94:2119CrossRefGoogle Scholar
  36. 36.
    Bhat MH, Berry FJ, Jiang JZ, Rao KJ (2001) J Non-Cryst Solids 291:93CrossRefGoogle Scholar
  37. 37.
    Bekaert É, Montagne L, Delevoye L, Palavit G, Wattiaux A (2004) J Non-Cryst Solids 345–346:70CrossRefGoogle Scholar
  38. 38.
    Williams KFE, Johnson CE, Nikolov O, Thomas MF, Johnson JA, Greengrass J (1998) J Non-Cryst Solids 242:183CrossRefGoogle Scholar
  39. 39.
    Williams KFE, Johnson CE, Greengrass J, Tilley BP, Gelder D, Johnson JA (1997) J. Non-Cryst Solids 211:164CrossRefGoogle Scholar
  40. 40.
    Takeda S, Akiyama R, Hosono H (2001) J Non-Cryst Solids 281:1CrossRefGoogle Scholar
  41. 41.
    Principi G, Maddalena A, Gupta A, Geotti-Bianchini F, Hreglich S, Verità M (1993) Nucl Instrum Methods Phys Res B76:215Google Scholar
  42. 42.
    Ehrt D (2008) J Non-Cryst Solids 354:546CrossRefGoogle Scholar
  43. 43.
    Muñoz F, Pascual L, Durán A, Rocherullé J, Marchand R (2006) J Eur Ceram Soc 26:1455CrossRefGoogle Scholar
  44. 44.
    Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York, p 492Google Scholar
  45. 45.
    Berry FJ, Thied RC (1997) J Alloys Compd 257:201CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Materials EngineeringTatung UniversityTaipeiTaiwan

Personalised recommendations