Advertisement

Journal of Materials Science

, Volume 46, Issue 4, pp 923–930 | Cite as

Poly(adipic acid-hexamethylene diamine)-functionalized multi-walled carbon nanotube nanocomposites

  • Xing-xiang Zhang
  • Qing-jie Meng
  • Xue-chen Wang
  • Shi-he Bai
Article

Abstract

Poly(adipic acid-hexamethylene diamine) (PA66)-functionalized multi-walled carbon nanotubes (PACNT) were fabricated using amino multi-walled carbon nanotubes (AMWNT), adipic acid-hexamethylene diamine salt as reactants at 260–270 °C. The solubility of AMWNT in formic acid is improved after PA66 functionalization. PA66 was successfully grafted onto the surface of AMWNT to form a core–shell nanostructure. AMWNT are surrounded by PA66 chains with an average thickness of 3 nm. The length of PA66 chains on the surface of AMWNT decreases, with the content of AMWNT increasing. The thermal decomposition temperature of the composite is lower than that of PA66 functionalized carboxylic multi-walled carbon nanotubes. The storage modulus of PACNT containing 5 wt% AMWNT is 2.8-fold that of PA66; and it increases as the content of AMWNT increases.

Keywords

Storage Modulus Adipic Acid Thermal Decomposition Temperature Anhydrous Alcohol Hexamethylene Diamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study is financially supported by the Science and Technology Development Plan of Tianjin Municipal (09JCZDJC22300) and The Science and Technology Development Fund of Tianjin Municipal Higher Educational School (2006ZD39).

References

  1. 1.
    Iijima S (1991) Nature 354(6348):56CrossRefGoogle Scholar
  2. 2.
    Xie XL, Mai YW, Zhou XP (2005) Mat Sci Eng R49:89Google Scholar
  3. 3.
    Tang WZ, Santare MH, Advani SG (2003) Carbon 41(14):2779CrossRefGoogle Scholar
  4. 4.
    Berger C, Yi Y, Wang ZL et al (2002) Appl Phys A 74(3):363CrossRefGoogle Scholar
  5. 5.
    Berger C, Poncharal P, Yi Y et al (2003) J Nanosci Nanotech 3(1–2):171CrossRefGoogle Scholar
  6. 6.
    Dillon AC, Heben M (2001) J Appl Phys A 72(2):133CrossRefGoogle Scholar
  7. 7.
    Haggenmueller R, Zhou W, Fischer JE et al (2003) J Nanosci Nanotech 3(1):105CrossRefGoogle Scholar
  8. 8.
    Frankland SJV, Caglar A, Brenner DW et al (2002) J Phys Chem B 106:3046CrossRefGoogle Scholar
  9. 9.
    Muňoz E, Dalton AB, Collins S et al (2004) Adv Eng Mater 6(10):801CrossRefGoogle Scholar
  10. 10.
    Frank K, Gogotsi Y, Ashraf A et al (2003) Adv Mater 15(14):1161CrossRefGoogle Scholar
  11. 11.
    Sreekumar TV, Liu T, Kumar S (2003) Chem Mater 15(1):175CrossRefGoogle Scholar
  12. 12.
    Mottaghitalab V, Spinks GM, Wallace GG (2005) Synth Met 152(1–3):77CrossRefGoogle Scholar
  13. 13.
    Sengupta R, Ganguly A, Sabharwal S et al (2007) J Mater Sci 42(3):923. doi: 10.1007/s10853-006-0011-1 CrossRefGoogle Scholar
  14. 14.
    Meng QJ, Wang ZM, Zhang XX, et al. (2010) High Perform Polym. doi: 10.1177/0954008309341919
  15. 15.
    Hu ZY, Zhang SF, Yang JZ et al (2003) J Appl Polym Sci 89:3889CrossRefGoogle Scholar
  16. 16.
    Gao JB, Itkis ME, Yu AP et al (2005) J Am Chem Soc 127(11):3847CrossRefGoogle Scholar
  17. 17.
    Yang YK, Xie XL, Wu JG (2006) J Polym Sci A 44(12):3869CrossRefGoogle Scholar
  18. 18.
    Yang YK, Xie XL, Wu JG et al (2006) Macromol Rapid Commu 27(19):1695CrossRefGoogle Scholar
  19. 19.
    Meng QJ, Zhang XX, Bai SH (2007) J Appl Polym Sci 106(3):2018CrossRefGoogle Scholar
  20. 20.
    Kong H, Gao C, Yan DY (2004) J Am Chem Soc 126(2):412CrossRefGoogle Scholar
  21. 21.
    Baskaran D, Mays JW, Bratcher MS (2005) Polymer 46(14):5050CrossRefGoogle Scholar
  22. 22.
    Baskaran D, Mays JW, Bratcher MS (2005) Chem Mater 17(13):3389CrossRefGoogle Scholar
  23. 23.
    Mitomo H, Nakazato K, Kuriyama I (2003) Polymer 19:1427CrossRefGoogle Scholar
  24. 24.
    Dreyfuss P, Keller A (1970) J Polym Sci B 8:253CrossRefGoogle Scholar
  25. 25.
    Li LY, Li CY, Ni CY et al (2007) Polymer 48:3452CrossRefGoogle Scholar
  26. 26.
    Jia ZJ, Wang ZY, Xu CL et al (1999) Mater Sci Eng A 271(1–2):395Google Scholar
  27. 27.
    Yuen SM, Ma CM, Lin YY et al (2007) Compos Sci Technol 67(11–12):2564CrossRefGoogle Scholar
  28. 28.
    Meng H, Sui GX, Fang PF et al (2008) Polymer 49:610CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xing-xiang Zhang
    • 1
  • Qing-jie Meng
    • 1
  • Xue-chen Wang
    • 1
  • Shi-he Bai
    • 1
  1. 1.Tianjin Municipal Key Lab of Fiber Modification and Functional Fibers, Institute of Functional Fibers, Tianjin Polytechnic UniversityTianjinChina

Personalised recommendations