Journal of Materials Science

, Volume 46, Issue 4, pp 889–895 | Cite as

Study of interdiffusion and growth of topologically closed packed phases in the Co–Nb system

  • S. S. K. Balam
  • A. Paul


Interdiffusion study of the Co–Nb system is conducted to determine the diffusion parameters in different phases. The integrated diffusion coefficients at different temperatures are calculated for the Nb2Co7 phase, which has very narrow composition range. The interdiffusion coefficients at different compositions in the NbCo2 Laves phase are determined. The interdiffusion coefficient in this phase decreases with increasing Nb content to the stoichiometric composition. Further, the average interdiffusion coefficient in the N6Co7-μ phase is determined. The activation energies for diffusion in different phases are calculated, providing valuable information regarding the diffusion mechanism. In addition, an experiment using Kirkendall markers is conducted to calculate the relative mobilities of the species.


Diffusion Couple Diffusion Parameter Interdiffusion Coefficient Relative Mobility Antisite Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Yang JX, Zheng Q, Sun XF, Guan HR, Hu ZQ (2007) Mater Sci Eng A A465:100Google Scholar
  2. 2.
    Simonetti M, Caron P (1998) Mater Sci Eng A A254:1Google Scholar
  3. 3.
    Reed RC, Rae CMF (2001) Acta Mater 49:4113CrossRefGoogle Scholar
  4. 4.
    Stein F, Jiang D, Palm M, Sauthoff G, Gruner D, Kreiner G (2008) Intermetallics 16:785CrossRefGoogle Scholar
  5. 5.
    Pargeter JK, Hume-Rothery W (1967) J Less Common Met 12:366CrossRefGoogle Scholar
  6. 6.
    Hari Kumar KC, Ansara I, Wollants P, Delaey L (1998) J Alloys Compd 267:105CrossRefGoogle Scholar
  7. 7.
    Okamoto H (2000) J Phase Equilib 21:495CrossRefGoogle Scholar
  8. 8.
    Sprengel W, Denkinger M, Mehrer H (1994) Intermetallics 2:127CrossRefGoogle Scholar
  9. 9.
    Sprengel W, Denkinger M, Mehrer H (1994) Intermetallics 2:137CrossRefGoogle Scholar
  10. 10.
    Denkinger M, Mehrer H (2000) Phil Mag A 80(5):1245CrossRefGoogle Scholar
  11. 11.
    Wagner C (1969) Acta Metall 17:99CrossRefGoogle Scholar
  12. 12.
    van Loo FJJ (1990) Prog Solid State Chem 20:47CrossRefGoogle Scholar
  13. 13.
    d’Heurle FM, Gas PJ (1986) Mater Res 1:205Google Scholar
  14. 14.
    Paul A, Kodentsov AA, Van Loo FJJ (2005) J Alloy Compd 403:147CrossRefGoogle Scholar
  15. 15.
    Krčmar M, Fu CL (2003) Phys Rev B 68:134110CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations