Journal of Materials Science

, Volume 46, Issue 3, pp 806–812 | Cite as

Thermal and optical properties of tellurite glasses doped erbium

  • I. Jlassi
  • H. Elhouichet
  • M. Ferid


Er3+-doped tellurite glasses with molar compositions of 75TeO2–20ZnO–(5 − x) Na2O–xEr2O3 (x = 0, 0.5, 1, 2, 3, and 4 mol%) have been elaborated from the melt-quenching method. The effects of Er2O3 concentration on the thermal stability and optical properties of tellurite glasses have been discussed. From the differential scanning calorimetry (DSC) profile, the glass transition temperature T g, and crystallization onset temperature T x are estimated. The thermal stability factor, defined as ∆T = T x − T g, was higher than 100 °C. It suggests that tellurite glass exhibits a good thermal stability and consequently is suitable to be a potential candidate for fiber drawing. Furthermore, the stability factor increases with Er2O3 concentration up to 2 mol% then presents a continue decrease suggesting of beginning of crystallization of highly doped tellurite glasses. The refractive index and extinction coefficient data were obtained by analyzing the experimental spectra of tanΨ and cos∆ measured by spectroscopic ellipsometry (SE). The complex dielectric functions (ε = ε1 + iε2) of the samples were estimated from regression analysis. The fundamental absorption edge has been identified from the optical absorption spectra and was analyzed in terms of the theory proposed by Davis and Mott. The values of optical band gap for direct and indirect allowed transitions have been determined. An important decrease of the optical band gap was found after Er doping. It was assigned to structural changes induced from the formation of non-bridging oxygen. The absorption coefficient just below the absorption edge varies exponentially with photon energy indicating the presence of Urbach’s tail. The origin of the Urbach energy is associated with the phonon-assisted indirect transitions.


TeO2 Spectroscopic Ellipsometry Er2O3 Fundamental Absorption Edge Tellurite Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wang JS, Vogel EM, Snitzer E (1994) Opt Mater 3(3):187CrossRefGoogle Scholar
  2. 2.
    Chen D et al (2007) J Appl Phys 101(11):113511CrossRefGoogle Scholar
  3. 3.
    Kishi Y et al (2005) J Am Ceram Soc 88(12):3423CrossRefGoogle Scholar
  4. 4.
    Tanabe S et al (2002) Opt Mater 19(3):343CrossRefGoogle Scholar
  5. 5.
    Liu YH et al (2007) J Opt Soc Am B 24(5):1046CrossRefGoogle Scholar
  6. 6.
    El-Mallawany RAH (2001) Tellurite glasses handbook-physical properties and data. CRC, Boca Raton, FLGoogle Scholar
  7. 7.
    Jewell JM, Busse LE, Crahan K, Harbison BB, Aggarwal ID (1994) Proc SPIE 2287:154CrossRefGoogle Scholar
  8. 8.
    Souza Neto NM, Ramos AY, Barbosa LC (2002) J Non-Cryst Solids 304:195CrossRefGoogle Scholar
  9. 9.
    Jha A, Shen S, Naftaly M (2000) Phys Rev B 62:6215CrossRefGoogle Scholar
  10. 10.
    Ravi Kanth Kumar VV, George AK, Knight JC, Russell PSJ (2003) Opt Exp 11:2641CrossRefGoogle Scholar
  11. 11.
    Vijaya Prakash G, Narayana Rao D, Bhatnagar AK (2001) Solid State Commun 119:39CrossRefGoogle Scholar
  12. 12.
    Wang JS, Vogel EM, Snitzer S (1994) Opt Mater 3:187CrossRefGoogle Scholar
  13. 13.
    Xu S, Fang D, Zhang Z, Jiang Z (2005) J Solid State Chem 178:1817Google Scholar
  14. 14.
    Ryba-Romanwski W, Golab S, Cichosz L, Jezowaska-Trzebiatawska B (1988) J Non-Cryst Solids 105:295CrossRefGoogle Scholar
  15. 15.
    Biswal S, Nees J, Nishimura A, Takuma H, Mourou G (1999) Opt Commun 160:92CrossRefGoogle Scholar
  16. 16.
    Graça MPF, Ferreira da Silva MG, Valente MA (2008) J Non-Cryst Solids 354:901CrossRefGoogle Scholar
  17. 17.
    Hruby H (1972) Czech J Phys B 32:1187CrossRefGoogle Scholar
  18. 18.
    Xu SQ, Yang ZM, Dai SX, Yang JH (2003) Chin Phys Lett 20:905CrossRefGoogle Scholar
  19. 19.
    Neindre L, Jiang S, Hwang BJ (1999) J Non-Cryst Solids 255:97CrossRefGoogle Scholar
  20. 20.
    Wang JS, Vogel EM, Snitzer E (1994) Opt Mater 3:187CrossRefGoogle Scholar
  21. 21.
    Tikhomirov VK, Seddon AB, Furniss D, Ferrari M (2003) J Non-Cryst Solids 326&327:296CrossRefGoogle Scholar
  22. 22.
    Ozen G, Demirata B, Ovecoglu ML, Genc A (2001) Spectrochim Acta A 57:273CrossRefGoogle Scholar
  23. 23.
    Sun J, Zhang J, Luo Y, Lu S, Ren X, Chen B, Wang X (2006) Opt Mater 28:306CrossRefGoogle Scholar
  24. 24.
    Xiao K, Yang Z (2007) Opt Mater 29:1475CrossRefGoogle Scholar
  25. 25.
    Babu P, Seo HJ, Kesavulu CR, Jang KH, Jayasankar CK (2009) J Lumin 129:444CrossRefGoogle Scholar
  26. 26.
    Yang Y, Yang Z, Chen B, Li P, Li X, Guo Q (2009) J Alloys Compd 479:883CrossRefGoogle Scholar
  27. 27.
    Ding Y, Jiang SB, Hwang BC, Luo T, Peyghambarian N, Himei Y, Ito T, Miura Y (2000) Opt Mater 15:123CrossRefGoogle Scholar
  28. 28.
    Yang J, Dai S, Zhou Y, Wen L, Hu L, Jiang Z (2003) J Appl Phys 93:977CrossRefGoogle Scholar
  29. 29.
    Macfarlane DR, Javorniczky JS, Newman PJ, Booth DJ, Bogdanov V (1995) J Non-Cryst Solids 184:249CrossRefGoogle Scholar
  30. 30.
    Azzam RMA, Bashara NM (1977) Ellipsometry and polarized light. North-Holland, AmsterdamGoogle Scholar
  31. 31.
    Wemple SH (1973) Phys Rev 7:3767CrossRefGoogle Scholar
  32. 32.
    Smith DY, Shiles E, Inokuti M (2004) Nucl Instrum Math Phys Res B 218:170CrossRefGoogle Scholar
  33. 33.
    Butov OV, Golant KM, Tomashuk AL, van Stralen MJN, Breuls AHE (2002) Opt Commun 213:301CrossRefGoogle Scholar
  34. 34.
    Wemple SH (1979) Appl Opt 18:31CrossRefGoogle Scholar
  35. 35.
    Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. Clarendon Press, OxfordGoogle Scholar
  36. 36.
    Davis EA, Mott NF (1970) Philos Mag 22:903CrossRefGoogle Scholar
  37. 37.
    Nelson C, Furukawa I, Nelson WB (1983) Mater Res Bull 18:959CrossRefGoogle Scholar
  38. 38.
    Mcswain BD, Borrel NF, Gongjen SV (1963) Phys Chem Glasses 4:1Google Scholar
  39. 39.
    Akamine S, Nanba T, Miura Y, Sakida S (2005) In: 9th biennial worldwide congress on refractories, 8–11 November, Orlando, FloridaGoogle Scholar
  40. 40.
    Berthereau A, Fargin E, Villezusanne A, Olazcuaga R, Le Flem G, Ducasse L (1996) J Solid State Chem 126:142CrossRefGoogle Scholar
  41. 41.
    Sakida S (2001) J Am Ceram Soc 84:836CrossRefGoogle Scholar
  42. 42.
    Hassan MA, Hogarth CA (1988) J Mater Sci 23:2500 doi: 10.1007/BF01111908 CrossRefGoogle Scholar
  43. 43.
    Skuja L, Kajihara K, Ikuta Y, Hirano M, Hosono H (2004) J Non-Cryst Solids 345–346:328CrossRefGoogle Scholar
  44. 44.
    Dayanand C, Bhikshamaiah G, Salagram M (1995) Mater Lett 23:309CrossRefGoogle Scholar
  45. 45.
    Chopra KL, Bahl SK (1972) Thin Solid Films 11:377CrossRefGoogle Scholar
  46. 46.
    Subrahmanyam K, Salagram M (2000) Opt Mater 15:181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs ApplicationsCentre National de Recherches en Sciences des MatériauxHammam-LifTunisia
  2. 2.Département de PhysiqueFaculté des Sciences de TunisCampus ElManarTunisia

Personalised recommendations