Advertisement

Journal of Materials Science

, Volume 46, Issue 3, pp 781–786 | Cite as

Synthesis of ZnO nanoparticles through the impregnated layer combustion synthesis process

  • F. A. Deorsola
  • D. Vallauri
Article

Abstract

Zinc oxide nanopowders were synthesized by a solution combustion technique named impregnated layer combustion synthesis (ILCS), involving the impregnation of an active layer with the reactant solution and subsequently the combustion of the impregnated system. In this work three different organic fuels and two different ignition modes were tested in order to optimize the final microstructure and specific surface area (SSA) of the ZnO nanopowders. In particular, the ignition mode was found to significantly affect the final products, discriminating between an explosion procedure (flame combustion) and a self-propagating mode (smoldering combustion). The nitrate–glycine mixture and the smoldering combustion way were found to be the most suitable conditions, giving rise to softly agglomerated nanopowders with an average size of 20 nm and a very high SSA, without the need of any further crystallization treatment.

Keywords

Active Layer High Specific Surface Area Zinc Nitrate Organic Fuel Solution Combustion Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors gratefully acknowledge Professor I. Amato for the overview of the technical work and the useful discussion.

References

  1. 1.
    Singhal M, Chhabra V, Kang P, Shah DO (1997) Mater Res Bull 32:239CrossRefGoogle Scholar
  2. 2.
    de Lacy Costello BPJ, Ewen RJ, Guernion N, Ratcliffe NM (2002) Sens Actuators B 87:207CrossRefGoogle Scholar
  3. 3.
    Yamazoe N, Sakai G, Shimanoe K (2003) Catal Surv Asia 7:63CrossRefGoogle Scholar
  4. 4.
    Baruwati B, Kumar DK, Manorama SV (2006) Sens Actuators B 119:676CrossRefGoogle Scholar
  5. 5.
    Cao MS, Shi XL, Fang XY, Jin HB, Hou ZL, Zhou W, Chen YJ (2007) Appl Phys Lett 91:203110CrossRefGoogle Scholar
  6. 6.
    Shi XL, Yuan J, Zhou W, Rong JL, Cao MS (2007) Chin Phys Lett 24:2994CrossRefGoogle Scholar
  7. 7.
    Park S, Lee JC, Kim BS, Lee JH (2005) J Mater Sci 40:5327. doi: 10.1007/s10853-005-4399-9 CrossRefGoogle Scholar
  8. 8.
    Park S, Lee JH, Kim HS, Park HJ, Lee JC (2009) J Electroceram 22:105CrossRefGoogle Scholar
  9. 9.
    Zhao YN, Cao MS, Li JG, Chen YJ (2006) J Mater Sci 41:2243. doi: 10.1007/s10853-006-7176-5 CrossRefGoogle Scholar
  10. 10.
    Zhao YN, Cao MS, Jin HB, Zhang L, Qiu CJ (2006) Scr Mater 54:2057CrossRefGoogle Scholar
  11. 11.
    Shaporev AS, Ivanov VK, Baranchiko AE, Tret’yakov YD (2007) Inorg Mater 43:35CrossRefGoogle Scholar
  12. 12.
    Look DC (2001) Mater Sci Eng B 80:383CrossRefGoogle Scholar
  13. 13.
    Pearton SJ, Norto DP, Ip K, Heo YW, Steiner T (2005) Prog Mater Sci 50:293CrossRefGoogle Scholar
  14. 14.
    Sheng X, Zhao Y, Zhai J, Jiang L, Zhu D (2007) Appl Phys A 87:715CrossRefGoogle Scholar
  15. 15.
    Cai KF, He XR, Zhang LC (2008) Mater Lett 62:1223CrossRefGoogle Scholar
  16. 16.
    Moghaddam FM, Saeidian H (2007) Mater Sci Eng B 139:265CrossRefGoogle Scholar
  17. 17.
    El Mir L, El Ghoul J, Alaya S, Ben Salem M, Barthou C, von Bardeleben HJ (2008) Physica B 403:1770CrossRefGoogle Scholar
  18. 18.
    Mondelaers D, Vanhoyland G, Van den Rul H, Haen JD, Van Bael MK, Mullens J, Van Poucke LC (2002) Mater Res Bull 37:901CrossRefGoogle Scholar
  19. 19.
    Tani T, Watanabe N, Takatori K (2003) J Nanopart Res 5:39CrossRefGoogle Scholar
  20. 20.
    Singh P, Kumar A, Deepak, Kaur D (2007) J Cryst Growth 306:303CrossRefGoogle Scholar
  21. 21.
    Dodd A, McKinley A, Tsuzuki T, Saunders M (2008) J Nanopart Res 10:243CrossRefGoogle Scholar
  22. 22.
    Zhao YN, Cao MS, Li JG, Chen YJ (2005) Mater Res Bull 40:1745CrossRefGoogle Scholar
  23. 23.
    Shi XL, Cao MS, Zhao YN, Song WL, Rong JL (2008) Sci China Ser E 51:1433CrossRefGoogle Scholar
  24. 24.
    Park S, Lee JC, Lee DW, Lee JH (2003) J Mater Sci 38:4493. doi: 10.1023/A:1027329501367 CrossRefGoogle Scholar
  25. 25.
    Lin CS, Hwang CC, Lee WH, Tong WY (2007) Mater Sci Eng B 140:31CrossRefGoogle Scholar
  26. 26.
    Mukasyan AS, Dinka P (2007) Int J SHS 16:23Google Scholar
  27. 27.
    Mukasyan AS, Dinka P (2007) Adv Eng Mater 9:653CrossRefGoogle Scholar
  28. 28.
    Kumar A, Mukasyan AS, Wolf EE (2010) Appl Catal A 372:175CrossRefGoogle Scholar
  29. 29.
    ZnO JCPDS card for X-ray pattern (JCPDS 36-1451)Google Scholar
  30. 30.
    Kashiwagi T, Nambu H (1992) Combust Flame 88:345CrossRefGoogle Scholar
  31. 31.
    Hwang CC, Wu TY (2004) Mater Sci Eng B 111:197Google Scholar
  32. 32.
    Hwang CC, Wu TY (2004) J Mater Sci 39:6111. doi: 10.1023/B:JMSC.0000041713.37366.c2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dipartimento di Scienza dei Materiali e Ingegneria ChimicaPolitecnico di TorinoTorinoItaly

Personalised recommendations