Advertisement

Journal of Materials Science

, Volume 45, Issue 24, pp 6617–6622 | Cite as

Structure and properties of ultrafine silk fibers produced by Theriodopteryx ephemeraeformis

  • Narendra Reddy
  • Yiqi Yang
Article

Abstract

Theriodopteryx ephemeraeformis commonly known as bag worms produce ultrafine silk fibers that are remarkably different than the common domesticated (Bombyx mori) and wild (Saturniidae) silk fibers. Bag worms are considered as pests and commonly infect trees and shrubs. Although it has been known that the cocoons (bags) produced by bag worms are composed of silk, the structure and properties of the silk fibers in the bag worm cocoons have not been studied. In this research, the composition, morphology, physical structure, thermal stability, and tensile properties of silk fibers produced by bag worms were studied. Bag worm silk fibers have considerably different amino acid contents from those of the common silks. The physical structure of the bag worm silk fibers is also considerably different compared with B. mori and common wild silk fibers. Bag worm’s silk fibers have lower tensile strength (3.2 g/denier) and Young’s modulus (45 g/denier) but similar breaking elongation (15.3%) compared with B. mori silk. However, the tensile strength and Young’s modulus of bag worm fibers are similar to those of the common Saturniidae wild silk fibers. Bag worm silk fibers could be useful for some of the applications currently using the B. mori and wild silk fibers.

Keywords

Silk Fiber Breaking Elongation Amino Acid Glycine Crystallographic Form Crystalline Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the financial support from the Agricultural Research Division at the University of Nebraska-Lincoln, USDA Hatch Act and Multi-State Project S1026 for completing this research.

References

  1. 1.
    Robson RM (1998) In: Lewin M, Pearce EM (eds) Handbook of fiber chemistry. Marcel Dekker Inc, New YorkGoogle Scholar
  2. 2.
    Sen K, Babu MK (2004) J Appl Polym Sci 92:1080CrossRefGoogle Scholar
  3. 3.
    Sen K, Babu MK (2004) J Appl Polym Sci 92:1098CrossRefGoogle Scholar
  4. 4.
    Kameda T, Tsukada M (2006) Macromol Mater Eng 291:877CrossRefGoogle Scholar
  5. 5.
    Acharya C C, Ghosh SK, Kundu SC (2009) Acta Biomater 5(1):429CrossRefPubMedGoogle Scholar
  6. 6.
    Kearns V, MacIntosh AC, Crawford A, Hatton PV (2008) Top Tissue Eng 4:1Google Scholar
  7. 7.
    Takeshita H, Ishida K, Kamiishi Y, Yoshii F, Kume T (2008) Macromol Mater Eng 283:126CrossRefGoogle Scholar
  8. 8.
    Kakati LN, Chutia BC (2009) Trop Ecol 50(1):137Google Scholar
  9. 9.
    Razafimanantosoa T, Ravoahangimalala OR, Craig CL (2006) Madag Conserv Dev 1(1):34Google Scholar
  10. 10.
    Acharya C, Ghosh SK, Kundu SC (2008) J Mater Sci Mater Med 19:2827CrossRefPubMedGoogle Scholar
  11. 11.
    Reddy N, Yang Y (2010) Int J Biol Macromol 46(4):419CrossRefPubMedGoogle Scholar
  12. 12.
    Sutherland TD, Weisman S, Trueman HE, Sriskantha A, Trueman JWH, Haritos VS (2007) Mol Biol Evol 24(11):2424CrossRefPubMedGoogle Scholar
  13. 13.
    Brown SA, Ruxton GD, Humphries A (2004) J N Am Benthol Soc 23(4):771CrossRefGoogle Scholar
  14. 14.
    Saravanan D (2006) J Text Appar Technol Manag 5(1):1Google Scholar
  15. 15.
    Rhainds M, Davis DR, Price PW (2009) Annu Rev Entomol 54:209CrossRefPubMedGoogle Scholar
  16. 16.
    Weiss HB (1914) Psyche 21(1):45CrossRefGoogle Scholar
  17. 17.
    Bhat NV, Nadiger GS (1980) J Appl Polym Sci 25:921CrossRefGoogle Scholar
  18. 18.
    Perez-Rigueiro J, Elices M, LLoraca J, Viney C (2001) J Appl Polym Sci 82:53CrossRefGoogle Scholar
  19. 19.
    Rajkhowa R, Gupta VB, Kothari VK (2000) J Appl Polym Sci 77:2418CrossRefGoogle Scholar
  20. 20.
    Shaw JTB, Smith SG (1961) Biochem Biophys Acta 52:305CrossRefPubMedGoogle Scholar
  21. 21.
    Craig CL, Hsu H, Kaplan D, Pierce NE (1999) Int J Biol Macromol 24:109CrossRefPubMedGoogle Scholar
  22. 22.
    Warwicker JO (1960) J Mol Biol 2:350CrossRefPubMedGoogle Scholar
  23. 23.
    Zhou C, Confalonieri F, Jacquet M, Perasso R, Li Z, Janin J (2001) Proteins Struct Funct Bioinf 44:119CrossRefGoogle Scholar
  24. 24.
    Gage LP, Manning RF (1980) J Biol Chem 255(19):9444PubMedGoogle Scholar
  25. 25.
    Lotz B, Cesari C (1979) Biochemie 61:205CrossRefGoogle Scholar
  26. 26.
    Zhao C, Yao J, Masuda H, Kishore R, Asakura T (2003) Biopolymers 69:253CrossRefPubMedGoogle Scholar
  27. 27.
    Dobb MG, Frazer RDB, Macrae TP (1967) J Cell Biol 32:289CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Textiles, Clothing & DesignUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of Biological Systems EngineeringUniversity of Nebraska-LincolnLincolnUSA
  3. 3.Nebraska Center for Materials and NanoscienceUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations