Skip to main content
Log in

Structure and properties of ultrafine silk fibers produced by Theriodopteryx ephemeraeformis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Theriodopteryx ephemeraeformis commonly known as bag worms produce ultrafine silk fibers that are remarkably different than the common domesticated (Bombyx mori) and wild (Saturniidae) silk fibers. Bag worms are considered as pests and commonly infect trees and shrubs. Although it has been known that the cocoons (bags) produced by bag worms are composed of silk, the structure and properties of the silk fibers in the bag worm cocoons have not been studied. In this research, the composition, morphology, physical structure, thermal stability, and tensile properties of silk fibers produced by bag worms were studied. Bag worm silk fibers have considerably different amino acid contents from those of the common silks. The physical structure of the bag worm silk fibers is also considerably different compared with B. mori and common wild silk fibers. Bag worm’s silk fibers have lower tensile strength (3.2 g/denier) and Young’s modulus (45 g/denier) but similar breaking elongation (15.3%) compared with B. mori silk. However, the tensile strength and Young’s modulus of bag worm fibers are similar to those of the common Saturniidae wild silk fibers. Bag worm silk fibers could be useful for some of the applications currently using the B. mori and wild silk fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Robson RM (1998) In: Lewin M, Pearce EM (eds) Handbook of fiber chemistry. Marcel Dekker Inc, New York

    Google Scholar 

  2. Sen K, Babu MK (2004) J Appl Polym Sci 92:1080

    Article  CAS  Google Scholar 

  3. Sen K, Babu MK (2004) J Appl Polym Sci 92:1098

    Article  CAS  Google Scholar 

  4. Kameda T, Tsukada M (2006) Macromol Mater Eng 291:877

    Article  CAS  Google Scholar 

  5. Acharya C C, Ghosh SK, Kundu SC (2009) Acta Biomater 5(1):429

    Article  PubMed  Google Scholar 

  6. Kearns V, MacIntosh AC, Crawford A, Hatton PV (2008) Top Tissue Eng 4:1

    Google Scholar 

  7. Takeshita H, Ishida K, Kamiishi Y, Yoshii F, Kume T (2008) Macromol Mater Eng 283:126

    Article  Google Scholar 

  8. Kakati LN, Chutia BC (2009) Trop Ecol 50(1):137

    Google Scholar 

  9. Razafimanantosoa T, Ravoahangimalala OR, Craig CL (2006) Madag Conserv Dev 1(1):34

    Google Scholar 

  10. Acharya C, Ghosh SK, Kundu SC (2008) J Mater Sci Mater Med 19:2827

    Article  CAS  PubMed  Google Scholar 

  11. Reddy N, Yang Y (2010) Int J Biol Macromol 46(4):419

    Article  CAS  PubMed  Google Scholar 

  12. Sutherland TD, Weisman S, Trueman HE, Sriskantha A, Trueman JWH, Haritos VS (2007) Mol Biol Evol 24(11):2424

    Article  CAS  PubMed  Google Scholar 

  13. Brown SA, Ruxton GD, Humphries A (2004) J N Am Benthol Soc 23(4):771

    Article  Google Scholar 

  14. Saravanan D (2006) J Text Appar Technol Manag 5(1):1

    Google Scholar 

  15. Rhainds M, Davis DR, Price PW (2009) Annu Rev Entomol 54:209

    Article  CAS  PubMed  Google Scholar 

  16. Weiss HB (1914) Psyche 21(1):45

    Article  Google Scholar 

  17. Bhat NV, Nadiger GS (1980) J Appl Polym Sci 25:921

    Article  CAS  Google Scholar 

  18. Perez-Rigueiro J, Elices M, LLoraca J, Viney C (2001) J Appl Polym Sci 82:53

    Article  CAS  Google Scholar 

  19. Rajkhowa R, Gupta VB, Kothari VK (2000) J Appl Polym Sci 77:2418

    Article  CAS  Google Scholar 

  20. Shaw JTB, Smith SG (1961) Biochem Biophys Acta 52:305

    Article  CAS  PubMed  Google Scholar 

  21. Craig CL, Hsu H, Kaplan D, Pierce NE (1999) Int J Biol Macromol 24:109

    Article  CAS  PubMed  Google Scholar 

  22. Warwicker JO (1960) J Mol Biol 2:350

    Article  CAS  PubMed  Google Scholar 

  23. Zhou C, Confalonieri F, Jacquet M, Perasso R, Li Z, Janin J (2001) Proteins Struct Funct Bioinf 44:119

    Article  CAS  Google Scholar 

  24. Gage LP, Manning RF (1980) J Biol Chem 255(19):9444

    CAS  PubMed  Google Scholar 

  25. Lotz B, Cesari C (1979) Biochemie 61:205

    Article  CAS  Google Scholar 

  26. Zhao C, Yao J, Masuda H, Kishore R, Asakura T (2003) Biopolymers 69:253

    Article  CAS  PubMed  Google Scholar 

  27. Dobb MG, Frazer RDB, Macrae TP (1967) J Cell Biol 32:289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Agricultural Research Division at the University of Nebraska-Lincoln, USDA Hatch Act and Multi-State Project S1026 for completing this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, N., Yang, Y. Structure and properties of ultrafine silk fibers produced by Theriodopteryx ephemeraeformis . J Mater Sci 45, 6617–6622 (2010). https://doi.org/10.1007/s10853-010-4752-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4752-5

Keywords

Navigation