Journal of Materials Science

, Volume 45, Issue 23, pp 6467–6473 | Cite as

Synthesis, phase transition, and magnetic property of iron oxide materials: effect of sodium hydroxide concentrations

  • Xiaohui Guo
  • Shengliang Zhong
  • Ji Zhang
  • Wanv Wang
  • JianJiang Mao
  • Gang Xie


In this paper, a class of novel iron oxide particles has been fabricated through surfactant-directed structure approach in hydrothermal reaction. The obtained iron oxide nanostructures with distinct morphologies, such as rhombohedra, octahedral, plate-like, as well as dendritic, can be obtained by gradually increasing the concentrations of NaOH. The as-prepared iron oxide particles were characterized utilizing scanning electronic microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Results reveal that the as-made particles, such as rhombohedra and octahedral, can be indexed as pure rhombohedral phase of hematite and show better single crystalline feature. In contrast, when NaOH concentrations are 1.05 and 6 M, respectively, we accordingly can obtain novel flake-like and dendrtic superstructure that possess a mean arm length of ~1.5 μm; both the as-made two samples can be easily indexed as a mixture of hematite and maghemite based on their XRD and TEM results. Additionally, it was found that the obtained iron oxide samples at different NaOH concentrations show obviously morphologies-dependent feature. Namely, the as-made samples can undergo transition from typical ferromagnetic to ferrimagnetic behavior when the NaOH concentrations are gradually increased. In general, the presented synthesis approach could be extended to prepare other metal oxides with specific morphology and structure.


Iron Oxide Hematite Maghemite Iron Oxide Particle Sodium Hydroxide Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by China Postdoctoral Scientific Fund (No. 20070420085), Research startup fund of northwest University (No. PR09047), Education committee of Shanxi Province (Grant No. 09JS089), and the National base Science cultivate Foundation of China (No. J0830417).

Supplementary material

10853_2010_4733_MOESM1_ESM.doc (2 mb)
Supplementary material 1 (DOC 2074 kb)


  1. 1.
    Sun SH, Murray CB, Weller D, Folks A (2000) Science 287:1989CrossRefADSPubMedGoogle Scholar
  2. 2.
    Sun SH, Zeng H, Robinson DB (2004) J Am Chem Soc 126:273CrossRefPubMedGoogle Scholar
  3. 3.
    Kuroda S, Nishizawa N, Takita K, Mitome M, Bando Y, Osuch K, Dieti T (2007) Nat Mater 6:440CrossRefADSPubMedGoogle Scholar
  4. 4.
    Mackenzie JD, Bescher EP (2007) Acc Chem Res 40:810CrossRefPubMedGoogle Scholar
  5. 5.
    Sakatani Y, Boissiere C, Grosso D, Nicole L, Soler-IIIia AA, Sanchez C (2008) Chem Mater 20:1049CrossRefGoogle Scholar
  6. 6.
    Sun Y, Xia Y (2002) Science 298:2176CrossRefADSPubMedGoogle Scholar
  7. 7.
    Sun YG, Mayers BT, Xia Y (2002) Nano Lett 2:481CrossRefADSGoogle Scholar
  8. 8.
    Gaidide Y, Kravchuk VP, Sheka D (2010) Int J Quantum Chem 110:83CrossRefGoogle Scholar
  9. 9.
    Hyeon T (2003) Chem Commun 927Google Scholar
  10. 10.
    Liu XH, Guo Y, Wang YG (2010) J Mater Sci 45:906. doi: 10.1007/s10853-009-4019-1 CrossRefADSGoogle Scholar
  11. 11.
    Kim J, Lee JE, Lee SH, Yu JH, Lee JH, Park TG, Hyeon T (2008) Adv Mater 20:478CrossRefGoogle Scholar
  12. 12.
    Veronica SM, Miguel CD (2007) Adv Mater 19:4131CrossRefGoogle Scholar
  13. 13.
    Zhao S, Wu HY, Song L (2009) J Mater Sci 44:926. doi: 10.1007/s10853-008-3192-y CrossRefADSGoogle Scholar
  14. 14.
    Gaihre B, Khil MS, Ko JA (2008) J Mater Sci 43:6881. doi: 10.1007/s10853-008-3003-5 CrossRefADSGoogle Scholar
  15. 15.
    Yang Y, Jiang JS (2008) J Mater Sci 43:4340. doi: 10.1007/s10853-008-2609-y CrossRefADSGoogle Scholar
  16. 16.
    Lin CK, Li Y, Yu M, Yang P, Lim J (2007) Adv Funct Mater 17:1459CrossRefGoogle Scholar
  17. 17.
    Hu XL, Yu JC, Gong JM, Li Q, Li GS (2007) Adv Mater 19:2324CrossRefGoogle Scholar
  18. 18.
    Xiong Y, Li Z, Li X, Hu B, Xie Y (2004) Inorg Chem 43:6540CrossRefPubMedGoogle Scholar
  19. 19.
    Cesar I, Jose AK, Martinez G, Gratzel M (2006) J Am Chem Soc 128:4582CrossRefPubMedGoogle Scholar
  20. 20.
    Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ (2006) Adv Mater 18:2426CrossRefGoogle Scholar
  21. 21.
    Cao HQ, Wang GZ, Zhang L, Liang L, Zhang SC, Zhang XR (2006) Chem Phys Chem 7:1897PubMedGoogle Scholar
  22. 22.
    Woo K, Lee HJ, Ahn JP, Park YS (2003) Adv Mater 15:1761CrossRefGoogle Scholar
  23. 23.
    Vayssieres L, Sathe C, Butorin SM, Shuh DK, Nordgren J, Guo JK (2005) Adv Mater 17:2320CrossRefGoogle Scholar
  24. 24.
    Zhou HJ, Woo SS (2008) ACS Nano 2:944CrossRefPubMedGoogle Scholar
  25. 25.
    Zhao YM, Li YH, Ma RZ, Roe MJ, McCarteny DG, Zhu YQ (2006) Small 2:422CrossRefPubMedGoogle Scholar
  26. 26.
    Pu ZF, Cao MR, Yang J, Huang KL (2006) Nanotechnology 17:799CrossRefADSGoogle Scholar
  27. 27.
    Anda M, Shamshuddin J, Fauziah IC, Omar SRS (2008) Soil Sci 173:560CrossRefGoogle Scholar
  28. 28.
    Cao MH, Liu TF, Gao S, Sun GB, Wu XL, Hu CW, Wang ZL (2005) Angew Chem Int Ed 44:4197CrossRefGoogle Scholar
  29. 29.
    Liu XH, Guo JJ, Cheng YC, Li Y, Xu GJ, Cui P (2008) J Cryst Growth 311:147CrossRefADSGoogle Scholar
  30. 30.
    Matijetivic E (1981) Acc Chem Res 14:22CrossRefGoogle Scholar
  31. 31.
    Elkins KE, Vedantam TS, Liu JP, Zeng H, Sun SH, Ding Y, Wang ZL (2003) Nano Lett 3:1647CrossRefADSGoogle Scholar
  32. 32.
    Song HM, Ko JM, Park JH (2009) Chem Lett 38:612CrossRefGoogle Scholar
  33. 33.
    Park TJ, Wong SS (2006) Chem Mater 18:5289CrossRefGoogle Scholar
  34. 34.
    Song Q, Zhang ZJ (2004) J Am Chem Soc 126:6164CrossRefPubMedGoogle Scholar
  35. 35.
    Lattuada M, Hatton TA (2007) Langmuir 23:2158CrossRefPubMedGoogle Scholar
  36. 36.
    Mitra S, Das S, Mandal K, Chaudhuri S (2007) Nanotechnology 18:275608CrossRefADSGoogle Scholar
  37. 37.
    Hahn NT, Ye HC, Flaherty DW, Bard AJ, Mullins CB (2010) ACS Nano 4:1977CrossRefPubMedGoogle Scholar
  38. 38.
    Jia CJ, Sun LD, Yan ZG, Pang YC, You LP, Yan CH (2007) J Phys Chem C 111:13022CrossRefGoogle Scholar
  39. 39.
    Wen XG, Wang SH, Ding Y, Wang ZL, Yang SH (2005) J Phys Chem B 109:215CrossRefPubMedGoogle Scholar
  40. 40.
    Lahav M, Sehayek T, Vaskeich A, Rubinstein I (2003) Angew Chem Int Ed 42:5576CrossRefGoogle Scholar
  41. 41.
    Clark SM, Prilliman SG, Erdonmez CK, Alivisatos AP (2005) Nanotechnology 16:2813CrossRefADSGoogle Scholar
  42. 42.
    Kulkaarni NV, Karmakar S, Banerjee I, Sahasarbudhe SN, Das AK, Bhoraskar SV (2009) Mater Res Bull 44:581CrossRefGoogle Scholar
  43. 43.
    Gnanaprakash G, Ayyappan S, Jayakumar T, Philip J, Raj B (2006) Nanotechnology 17:5851CrossRefADSGoogle Scholar
  44. 44.
    Hu XL, Yu JC (2008) Adv Funct Mater 18:880CrossRefGoogle Scholar
  45. 45.
    Guo XH, Deng YH, Gu D, Che RC, Zhao DY (2009) J Mater Chem 19:6706CrossRefGoogle Scholar
  46. 46.
    Liang X, Wang X, Zhuang J, Chen YT, Wang DS, Li YD (2006) Adv Funct Mater 16:1805CrossRefGoogle Scholar
  47. 47.
    Guo XH, Xu AW, Yu SH (2008) Cryst Growth Des 8:1233CrossRefGoogle Scholar
  48. 48.
    Peng ZA, Peng XG (2001) J Am Chem Soc 123:1389CrossRefGoogle Scholar
  49. 49.
    Bhagwat S, Singh H, Athawale A (2007) J Nanosci Nanotechnol 7:4294CrossRefPubMedGoogle Scholar
  50. 50.
    Palotas K, Andriotis AN, Lappas A (2010) Phys Rev B 81:075403CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xiaohui Guo
    • 1
  • Shengliang Zhong
    • 2
  • Ji Zhang
    • 1
  • Wanv Wang
    • 1
  • JianJiang Mao
    • 3
  • Gang Xie
    • 1
  1. 1.Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, The College of Chemical & Materials ScienceNorthwest University of ChinaXi’anPeople’s Republic of China
  2. 2.The College of Chemistry & ChemicalJiangxi Normal UniversityNanchang CityChina
  3. 3.Department of ChemistryFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations