Journal of Materials Science

, Volume 45, Issue 23, pp 6411–6416 | Cite as

Effects of hydrolysis on dodecyl alcohol-modified bioactive glasses and PDLLA/modified bioactive glass composite films



In this article, mesoporous 58S and 58S bioactive glasses (BGs) were surface modified by dodecyl alcohol through esterification reaction and PDLLA/modified BGs composite films were prepared. The purpose of this study was to investigate the properties of the modified BGs particles and the PDLLA/modified BGs composite films before and after hydrolytic treatment. The modified BGs powders and composite films were treated in boiling water for 20 min to remove the dodecyl chains. After hydrolytic treatment, the modified BGs powders showed increased hydrophilicity and the FTIR analysis revealed that most dodecyl chains were removed. Furthermore, the hydrophilicity of the PDLLA/modified BGs composite films was also greatly improved. The tensile strength of the composite films after hydrolysis decreased slightly, but was still much higher than that of pure PDLLA film. In addition, bone marrow mesenchymal stem cells from dogs on the composite films after hydrolytic treatment showed the highest proliferation rate. The results suggest that hydrolytic treatment is an effective and practicable method to remove alcohol chains from surface-modified BGs and polymers/modified BG composites, which may be used for preparation of bioactive scaffolds for tissue engineering applications.


Composite Film Water Contact Angle Bioactive Glass Esterification Reaction Inorganic Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was financially supported by the National Basic Science Research Program of China (973 Program) (Grant No. 2005CB522704), the Natural Science Foundation of China (Grant No. 30730034), and Science and Technology Commission of Shanghai Municipality (Grant No. 08JC1420800).


  1. 1.
    Hench LL (1991) J Am Ceram Soc 74:1487CrossRefGoogle Scholar
  2. 2.
    Hench LL, Polak JM (2002) Science 295:1014CrossRefADSPubMedGoogle Scholar
  3. 3.
    Hench LL, West KJ (1990) Chem Rev 90:33CrossRefGoogle Scholar
  4. 4.
    Saravanapavan P, Hench LL (2003) J Non-Cyst Solids 318:1CrossRefADSGoogle Scholar
  5. 5.
    Vallet-Regi M, Ragel CV, Salinas AJ (2003) Eur J Inorg Chem 1029Google Scholar
  6. 6.
    Yan XX, Yu CZ, Zhou XF, Tang JW, Zhao DY (2004) Angew Chem Int Ed 43:5980CrossRefGoogle Scholar
  7. 7.
    Rich J, Jaakkola T, Tirri T, Narhi T, Yli-Urpo A, Seppala J (2002) Biomaterials 23:2143CrossRefPubMedGoogle Scholar
  8. 8.
    Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE, Roy I, Salih V, Knowles JC, Boccaccini AR (2008) Biomaterials 29:1750CrossRefPubMedGoogle Scholar
  9. 9.
    Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerome R (2004) Biomaterials 25:4185CrossRefPubMedGoogle Scholar
  10. 10.
    Jiang G, Evans ME, Jones IA, Rudd CD, Scotchford CA, Walker GS (2005) Biomaterials 26:2281CrossRefPubMedGoogle Scholar
  11. 11.
    Silva GA, Costa FJ, Coutinho OP, Radin S, Ducheyne P, Reis RL (2004) J Biomed Mater Res A 70A:442CrossRefGoogle Scholar
  12. 12.
    Verrier S, Blaker JJ, Maquet V, Hench LL, Boccaccini AR (2004) Biomaterials 25:3013CrossRefPubMedGoogle Scholar
  13. 13.
    Lo H, Kadiyala S, Guggino SE, Leong KW (1996) J Biomed Mater Res 30:475CrossRefPubMedGoogle Scholar
  14. 14.
    Stamboulis A, Hench LL, Boccaccini AR (2002) J Mater Sci Mater Med 13:843CrossRefPubMedGoogle Scholar
  15. 15.
    Yao J, Radin S, Leboy PS, Ducheyne P (2005) Biomaterials 26:1935CrossRefPubMedGoogle Scholar
  16. 16.
    Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerome R (2003) J Biomed Mater Res A 66A:335CrossRefGoogle Scholar
  17. 17.
    Hong ZK, Zhang PB, He CL, Qiu XY, Liu AX, Chen L, Chen XS, Jing XB (2005) Biomaterials 26:6296CrossRefPubMedGoogle Scholar
  18. 18.
    Supova M (2009) J Mater Sci Mater Med 20:1201CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang SM, Liu J, Zhou W, Cheng L, Guo XD (2005) Curr Appl Phys 5:516CrossRefADSGoogle Scholar
  20. 20.
    Cheng W, Chang J (2006) J Biomater Appl 20:361CrossRefPubMedGoogle Scholar
  21. 21.
    Borum-Nicholas L, Wilson OC (2003) Biomaterials 24:3671CrossRefPubMedGoogle Scholar
  22. 22.
    Liu AX, Hong ZK, Zhuang XL, Chen XS, Cui Y, Liu Y, Jing XB (2008) Acta Biomater 4:1005CrossRefPubMedGoogle Scholar
  23. 23.
    Gao Y, Chang J (2009) J Biomater Appl 24:119CrossRefPubMedGoogle Scholar
  24. 24.
    Steele JG, McFarland C, Dalton BA, Johnson G, Evans MDM, Howlett CR, Underwood PA (1993) J Biomater Sci Polym Ed 5:245CrossRefPubMedGoogle Scholar
  25. 25.
    Ballard CC, Broge EC, McWhorter JR, Iler RK, Stjohn DS (1961) J Phys Chem 65:20CrossRefGoogle Scholar
  26. 26.
    Zhong JP, Greenspan DC (2000) J Biomed Mater Res 53:694CrossRefPubMedGoogle Scholar
  27. 27.
    Xia W, Chang J (2006) J Controlled Release 110:522CrossRefGoogle Scholar
  28. 28.
    Ringe J, Kaps C, Schmitt B, Buscher K, Bartel J, Smolian H et al (2002) Cell Tissue Res 307:321CrossRefPubMedGoogle Scholar
  29. 29.
    Dufrane D, Delloye C, McKay IJ, De Aza PN, De Aza S, Schneider YJ, Schultz O, Burmester GR, Haupl T, Sittinger M (2003) J Mater Sci Mater Med 14:33CrossRefPubMedGoogle Scholar
  30. 30.
    Ossenkamp GC, Kemmitt T, Johnston JH (2002) Langmuir 18:5749CrossRefGoogle Scholar
  31. 31.
    Arcos D, Greenspan DC, Vallet-Regi M (2003) J Biomed Mater Res A 65A:344CrossRefGoogle Scholar
  32. 32.
    Hiroshi Utsugi HH, Matsuzawa T (1975) J Colloid Interface Sci 50:154CrossRefGoogle Scholar
  33. 33.
    Anselme K (2000) Biomaterials 21:667CrossRefPubMedGoogle Scholar
  34. 34.
    Verrier S, Bareille R, Rovira A, Dard M, Amedee J (1996) J Mater Sci Mater Med 7:46CrossRefGoogle Scholar
  35. 35.
    Yang M, Zhu SS, Chen Y, Chang ZJ, Chen GQ, Gong YD, Zhao NM, Zhang XF (2004) Biomaterials 25:1365CrossRefPubMedGoogle Scholar
  36. 36.
    Webb K, Hlady V, Tresco PA (1998) J Biomed Mater Res 41:422CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  2. 2.Graduate School of the Chinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations