Skip to main content
Log in

Effects of hydrolysis on dodecyl alcohol-modified bioactive glasses and PDLLA/modified bioactive glass composite films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article, mesoporous 58S and 58S bioactive glasses (BGs) were surface modified by dodecyl alcohol through esterification reaction and PDLLA/modified BGs composite films were prepared. The purpose of this study was to investigate the properties of the modified BGs particles and the PDLLA/modified BGs composite films before and after hydrolytic treatment. The modified BGs powders and composite films were treated in boiling water for 20 min to remove the dodecyl chains. After hydrolytic treatment, the modified BGs powders showed increased hydrophilicity and the FTIR analysis revealed that most dodecyl chains were removed. Furthermore, the hydrophilicity of the PDLLA/modified BGs composite films was also greatly improved. The tensile strength of the composite films after hydrolysis decreased slightly, but was still much higher than that of pure PDLLA film. In addition, bone marrow mesenchymal stem cells from dogs on the composite films after hydrolytic treatment showed the highest proliferation rate. The results suggest that hydrolytic treatment is an effective and practicable method to remove alcohol chains from surface-modified BGs and polymers/modified BG composites, which may be used for preparation of bioactive scaffolds for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hench LL (1991) J Am Ceram Soc 74:1487

    Article  CAS  Google Scholar 

  2. Hench LL, Polak JM (2002) Science 295:1014

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Hench LL, West KJ (1990) Chem Rev 90:33

    Article  CAS  Google Scholar 

  4. Saravanapavan P, Hench LL (2003) J Non-Cyst Solids 318:1

    Article  CAS  ADS  Google Scholar 

  5. Vallet-Regi M, Ragel CV, Salinas AJ (2003) Eur J Inorg Chem 1029

  6. Yan XX, Yu CZ, Zhou XF, Tang JW, Zhao DY (2004) Angew Chem Int Ed 43:5980

    Article  CAS  Google Scholar 

  7. Rich J, Jaakkola T, Tirri T, Narhi T, Yli-Urpo A, Seppala J (2002) Biomaterials 23:2143

    Article  CAS  PubMed  Google Scholar 

  8. Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE, Roy I, Salih V, Knowles JC, Boccaccini AR (2008) Biomaterials 29:1750

    Article  CAS  PubMed  Google Scholar 

  9. Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerome R (2004) Biomaterials 25:4185

    Article  CAS  PubMed  Google Scholar 

  10. Jiang G, Evans ME, Jones IA, Rudd CD, Scotchford CA, Walker GS (2005) Biomaterials 26:2281

    Article  CAS  PubMed  Google Scholar 

  11. Silva GA, Costa FJ, Coutinho OP, Radin S, Ducheyne P, Reis RL (2004) J Biomed Mater Res A 70A:442

    Article  CAS  Google Scholar 

  12. Verrier S, Blaker JJ, Maquet V, Hench LL, Boccaccini AR (2004) Biomaterials 25:3013

    Article  CAS  PubMed  Google Scholar 

  13. Lo H, Kadiyala S, Guggino SE, Leong KW (1996) J Biomed Mater Res 30:475

    Article  CAS  PubMed  Google Scholar 

  14. Stamboulis A, Hench LL, Boccaccini AR (2002) J Mater Sci Mater Med 13:843

    Article  CAS  PubMed  Google Scholar 

  15. Yao J, Radin S, Leboy PS, Ducheyne P (2005) Biomaterials 26:1935

    Article  CAS  PubMed  Google Scholar 

  16. Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerome R (2003) J Biomed Mater Res A 66A:335

    Article  CAS  Google Scholar 

  17. Hong ZK, Zhang PB, He CL, Qiu XY, Liu AX, Chen L, Chen XS, Jing XB (2005) Biomaterials 26:6296

    Article  CAS  PubMed  Google Scholar 

  18. Supova M (2009) J Mater Sci Mater Med 20:1201

    Article  CAS  PubMed  Google Scholar 

  19. Zhang SM, Liu J, Zhou W, Cheng L, Guo XD (2005) Curr Appl Phys 5:516

    Article  ADS  Google Scholar 

  20. Cheng W, Chang J (2006) J Biomater Appl 20:361

    Article  CAS  PubMed  Google Scholar 

  21. Borum-Nicholas L, Wilson OC (2003) Biomaterials 24:3671

    Article  CAS  PubMed  Google Scholar 

  22. Liu AX, Hong ZK, Zhuang XL, Chen XS, Cui Y, Liu Y, Jing XB (2008) Acta Biomater 4:1005

    Article  CAS  PubMed  Google Scholar 

  23. Gao Y, Chang J (2009) J Biomater Appl 24:119

    Article  CAS  PubMed  Google Scholar 

  24. Steele JG, McFarland C, Dalton BA, Johnson G, Evans MDM, Howlett CR, Underwood PA (1993) J Biomater Sci Polym Ed 5:245

    Article  CAS  PubMed  Google Scholar 

  25. Ballard CC, Broge EC, McWhorter JR, Iler RK, Stjohn DS (1961) J Phys Chem 65:20

    Article  CAS  Google Scholar 

  26. Zhong JP, Greenspan DC (2000) J Biomed Mater Res 53:694

    Article  CAS  PubMed  Google Scholar 

  27. Xia W, Chang J (2006) J Controlled Release 110:522

    Article  CAS  Google Scholar 

  28. Ringe J, Kaps C, Schmitt B, Buscher K, Bartel J, Smolian H et al (2002) Cell Tissue Res 307:321

    Article  CAS  PubMed  Google Scholar 

  29. Dufrane D, Delloye C, McKay IJ, De Aza PN, De Aza S, Schneider YJ, Schultz O, Burmester GR, Haupl T, Sittinger M (2003) J Mater Sci Mater Med 14:33

    Article  CAS  PubMed  Google Scholar 

  30. Ossenkamp GC, Kemmitt T, Johnston JH (2002) Langmuir 18:5749

    Article  CAS  Google Scholar 

  31. Arcos D, Greenspan DC, Vallet-Regi M (2003) J Biomed Mater Res A 65A:344

    Article  CAS  Google Scholar 

  32. Hiroshi Utsugi HH, Matsuzawa T (1975) J Colloid Interface Sci 50:154

    Article  Google Scholar 

  33. Anselme K (2000) Biomaterials 21:667

    Article  CAS  PubMed  Google Scholar 

  34. Verrier S, Bareille R, Rovira A, Dard M, Amedee J (1996) J Mater Sci Mater Med 7:46

    Article  CAS  Google Scholar 

  35. Yang M, Zhu SS, Chen Y, Chang ZJ, Chen GQ, Gong YD, Zhao NM, Zhang XF (2004) Biomaterials 25:1365

    Article  CAS  PubMed  Google Scholar 

  36. Webb K, Hlady V, Tresco PA (1998) J Biomed Mater Res 41:422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was financially supported by the National Basic Science Research Program of China (973 Program) (Grant No. 2005CB522704), the Natural Science Foundation of China (Grant No. 30730034), and Science and Technology Commission of Shanghai Municipality (Grant No. 08JC1420800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Gao, Y. & Chang, J. Effects of hydrolysis on dodecyl alcohol-modified bioactive glasses and PDLLA/modified bioactive glass composite films. J Mater Sci 45, 6411–6416 (2010). https://doi.org/10.1007/s10853-010-4724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4724-9

Keywords

Navigation