Advertisement

Journal of Materials Science

, Volume 45, Issue 23, pp 6401–6405 | Cite as

A simple way to prepare precursors for zirconium carbide

  • Dan Zhao
  • Haifeng Hu
  • Changrui Zhang
  • Yudi Zhang
  • Jun Wang
Article

Abstract

A precursor for zirconium carbide was obtained by just blending zirconium butoxide Zr(OC4H9)4 (ZTB) and divinylbenzene (DVB). This precursor satisfied the requirements for use in ceramic matrix composites fabrication via precursor infiltration and pyrolysis (PIP) process, that is, it was a solution, cross-linked at 150 °C for 2 h, and transformed to ZrC matrix upon heat treatment at 1,600 °C with a ceramic yield around 40%. The cross-linking behavior, pyrolysis process, and optimal molar ratio (ZTB and DVB) of the precursor were investigated by IR, DSC–TGA, and XRD analysis. ZTB and DVB decomposed into ZrO2 and carbon, respectively, at 400–500 °C, and ZrO2 and carbon reacted with each other via carbo-thermal reaction at higher temperature to form ZrC.

Keywords

Carbothermal Reduction Volume Shrinkage Ceramic Matrix Composite Zirconium Carbide Ceramic Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China.

References

  1. 1.
    Das BP, Panneerselvam M, Rao KJ (2003) J Solid State Chem 173:196CrossRefADSGoogle Scholar
  2. 2.
    Wang Z, Dong S, Zhang X, Zhou H, Wu D, Zhou Q, Jiang D (2008) J Am Ceram Soc 91:3434CrossRefGoogle Scholar
  3. 3.
    Li H, Zhang L, Cheng L, Wang Y (2009) Ceram Int 35:2831CrossRefGoogle Scholar
  4. 4.
    Wang Q, Chen Z, Hu H, Zhang Y (2008) J Aeronaut Mater 28:68 (in Chinese)Google Scholar
  5. 5.
    Leconte Y, Maskrot H, Combemale L, Herlin-Boime N, Reynaud CC (2007) J Anal Appl Pyrolysis 79:465CrossRefGoogle Scholar
  6. 6.
    Sacks MD, Wang CA, Yang Z, Jain A (2004) J Mater Sci 39:6057. doi: 10.1023/B:JMSC.0000041702.76858.a7 CrossRefADSGoogle Scholar
  7. 7.
    Yan Y, Huang Z, Liu X, Jiang D (2007) J Sol-Gel Sci Technol 44:81CrossRefGoogle Scholar
  8. 8.
    Dong J, Shen WC, Liu X, Hu XF, Zhang BF, Kang FY, Gu JL, Li DS, Chen NP (2001) Mater Res Bull 36:933CrossRefGoogle Scholar
  9. 9.
    Song MS, Huang B, Zhang MX, Li JG (2009) Powder Technol 191:34CrossRefGoogle Scholar
  10. 10.
    Tsuchida T, Yamamoto S (2007) J Mater Sci 42:772. doi: 10.1007/s10853-006-0719-y CrossRefADSGoogle Scholar
  11. 11.
    Preiss H, Schierhorn E, Brzezinka KW (1998) J Mater Sci 33:4697. doi: 10.1023/A:1004428818457 CrossRefGoogle Scholar
  12. 12.
    Dollé M, Gosset D, Bogicevic C, Karolak F, Simeone D, Baldinozzi G (2007) J Eur Ceram Soc 27:2061CrossRefGoogle Scholar
  13. 13.
    Zhou GH, Wang SW, Guo JK, Zhang Z (2008) J Eur Ceram Soc 28:787CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dan Zhao
    • 1
  • Haifeng Hu
    • 1
  • Changrui Zhang
    • 1
  • Yudi Zhang
    • 1
  • Jun Wang
    • 1
  1. 1.CFC Laboratory, College of Aerospace and Materials EngineeringNational University of Defense TechnologyChangshaChina

Personalised recommendations