Journal of Materials Science

, Volume 45, Issue 17, pp 4711–4717 | Cite as

Crystal plasticity investigation of friction effect on texture evolution of Al single crystal during ECAP

  • G. Y. Deng
  • C. Lu
  • A. K. Tieu
  • L. H. Su
  • N. N. Huynh
  • X. H. Liu
Ultrafine Grained Materials


A crystal plasticity finite element model has been developed to study the effect of friction between the die wall and the billet on texture evolution during equal channel angular pressing of an aluminum single crystal. Four cases with different coefficients of friction μ = 0, 0.05, 0.1, and 0.15 have been simulated. It has been found that the friction of μ = 0.05 and 0.1 can capture the major texture features shown in the experimental results, and μ = 0.05 predicts a slightly better texture than μ = 0.1. The frictional condition significantly affects texture evolution in the region between 1/2 and 3/4 of the billet thickness from the top surface. It can be attributed to the effect of friction on the corner gap and the distribution of stresses in the die corner.


Pole Figure Equal Channel Angular Pressing Texture Evolution Plastic Deformation Zone Matrix Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support from an Australia Research Council Discovery Grant (DP0773329). G. Y. Deng and L. H. Su would like to thank the financial support from China Scholarship Council.


  1. 1.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  2. 2.
    Zhu YT, Langdon TG (2004) JOM 56:58CrossRefGoogle Scholar
  3. 3.
    Semiatin SL, Delo DP, Shell EB (2000) Acta Mater 48:1841CrossRefGoogle Scholar
  4. 4.
    Moon BS, Kim HS, Hong SI (2002) Scr Mater 46:131CrossRefGoogle Scholar
  5. 5.
    Li S, Beyerlein IJ, Necker CT, Alexander DJ, Bourke M (2004) Acta Mater 52:4859CrossRefGoogle Scholar
  6. 6.
    Su CW, Lu L, Lai MO (2007) Mater Sci Technol 23:727CrossRefADSGoogle Scholar
  7. 7.
    Segal VM (2004) Mater Sci Eng A 386:269Google Scholar
  8. 8.
    Mathieu JP, Suwas S, Eberhardt A, Toth LS, Moll P (2006) J Mater Process Technol 173:29CrossRefGoogle Scholar
  9. 9.
    Hockauf M, Meyer LW, Kruger L (2008) Mater Sci Forum 584–586:685CrossRefGoogle Scholar
  10. 10.
    Lee JC, Seok HK, Suh JY (2002) Acta Mater 50:4005CrossRefGoogle Scholar
  11. 11.
    Raab GJ, Valiev RZ, Lowe TC, Zhu YT (2004) Mater Sci Eng A 382:30CrossRefGoogle Scholar
  12. 12.
    Prangnell PB, Harris C, Roberts SM (1997) Scr Mater 37:983CrossRefGoogle Scholar
  13. 13.
    Yang YL, Lee S (2003) J Mater Process Technol 140:583CrossRefGoogle Scholar
  14. 14.
    Li S, Bourke MAM, Beyerlein IJ, Alexander DJ, Clausen B (2004) Mater Sci Eng A 382:217CrossRefGoogle Scholar
  15. 15.
    Wei W, Nagasekhar AV, Chen G, Tick-Hon Y, Wei KX (2006) Scr Mater 54:1865CrossRefGoogle Scholar
  16. 16.
    Xu S, Zhao G, Ma X, Ren G (2007) J Mater Process Technol 184:209CrossRefGoogle Scholar
  17. 17.
    Balasundar I, Raghu T (2010) Mater Des 31:449Google Scholar
  18. 18.
    Suh JY, Han JH, Oh KH, Lee JC (2003) Scr Mater 49:185CrossRefGoogle Scholar
  19. 19.
    Li S, Beyerlein IJ, Alexander DJ, Vogel SC (2005) Scr Mater 52:1099CrossRefGoogle Scholar
  20. 20.
    Ferrasse S, Segal VM, Kalidindi SR, Alford F (2004) Mater Sci Eng A 368:28CrossRefGoogle Scholar
  21. 21.
    Li S, Beyerlein IJ, Bourke MAM (2005) Mater Sci Eng A 394:66CrossRefGoogle Scholar
  22. 22.
    Wenk HR, Van Houtte P (2004) Rep Prog Phys 67:1367CrossRefADSGoogle Scholar
  23. 23.
    Li S, Kalidindi SR, Beyerlein IJ (2005) Mater Sci Eng A 410–411:207Google Scholar
  24. 24.
    Asaro RJ (1983) J Appl Mech Trans ASME 50:921CrossRefGoogle Scholar
  25. 25.
    Si LY, Lu C, Huynh NN, Tieu AK, Liu XH (2008) J Mater Process Technol 201:79CrossRefGoogle Scholar
  26. 26.
    Huang YG (1991) Mech Report 178. Division of Engineering and Applied Sciences, Harvard University, Cambridge, MassachusettsGoogle Scholar
  27. 27.
    Bassani JL, Wu TY (1991) Proc R Soc Lond A 435:21CrossRefADSGoogle Scholar
  28. 28.
    Gholinia A, Bate P, Prangnell PB (2002) Acta Mater 50:2121CrossRefGoogle Scholar
  29. 29.
    Fukuda Y, Oh-ishi K, Furukawa M, Horita Z, Langdon TG (2004) Acta Mater 52:1387CrossRefGoogle Scholar
  30. 30.
    Wert JA, Liu Q, Hansen N (1997) Acta Mater 45:2565CrossRefGoogle Scholar
  31. 31.
    Beyerlein IJ, Toth LS (2009) Prog Mater Sci 54:427CrossRefGoogle Scholar
  32. 32.
    Liu Q, Maurice C, Driver J, Hansen N (1998) Metall Mater Trans A Phys Metall Mater Sci 29:2333CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • G. Y. Deng
    • 1
    • 2
  • C. Lu
    • 2
  • A. K. Tieu
    • 2
  • L. H. Su
    • 2
    • 3
  • N. N. Huynh
    • 2
  • X. H. Liu
    • 1
  1. 1.State Key Lab of Rolling and AutomationNortheastern UniversityShenyangChina
  2. 2.School of Mechanical, Materials and Mechatronic EngineeringUniversity of WollongongWollongongAustralia
  3. 3.School of Materials and MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations