Skip to main content
Log in

Effect of filler dispersion degree on the Joule heating stimulated recovery behaviour of nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Composites based on highly branched ethylene-1-octene copolymer (EOC) and carbon black (CB) with different dispersion degree of CB were prepared. The method of the online measured electrical conductance/resistance was used to monitor the change of the electrical conductance/resistance of the composites during the preparation processes, i.e. mixing and cross-linking. It was found that the kinetics of thermally stimulated shape-memory recovery of CB filled EOC is strongly influenced by the filler dispersion degree, which actually affects the heat transfer in the composites. Using a special arrangement of experiments the Joule heating stimulated shape-memory behaviour was quantified. CB dispersion degree and related electrical resistivity determine the extent of the Joule heating stimulated shape-memory behaviour. Composite collected at the maximum in the online measured conductance–time characteristics showed the best shape-memory effect owing to the highest electrical conductivity in the solid state. The CB filled EOC showed a negative thermal coefficient of resistivity (NTC) effect, which accelerates the temperature increase and shape-memory recovery of the composites when applying a voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lendlein A, Langer R (2002) Science 296:1673

    Article  ADS  PubMed  Google Scholar 

  2. Lendlein A, Kelch S (2002) Angew Chem Int Ed 41:2034

    Article  CAS  Google Scholar 

  3. Behl M, Lendlein A (2007) Mater Today 10:20

    Article  CAS  Google Scholar 

  4. Gunes IS, Cao F, Jana SC (2008) Polymer 49:2223

    Article  CAS  Google Scholar 

  5. Gunes IS, Jana SC (2008) J Nanosci Nanotechnol 8:1616

    Article  CAS  PubMed  Google Scholar 

  6. Lan X, Huang WM, Leng JS, Liu N, Phee LSJ, Yuan Q (2008) Gummi Fasern Kunstst 61:784

    CAS  Google Scholar 

  7. Leng J, Liu HL, Liu Y, Du S (2007) Appl Phys Lett 91:144105-1

    Article  ADS  Google Scholar 

  8. Cho JW, Kim JW, Jung YC, Goo NS (2005) Macromol Rapid Commun 26:412

    Article  CAS  Google Scholar 

  9. Paik IH, Goo NS, Jung YC, Cho JW (2006) Smart Mater Struct 15:1476

    Article  CAS  ADS  Google Scholar 

  10. Jiang X, Bin Y, Matsuo M (2005) Polymer 46:7418

    Article  CAS  Google Scholar 

  11. Ni QQ, Zhang Ch, Fu Y, Dai G, Kimura T (2007) Compos Struct 81:176

    Article  Google Scholar 

  12. Meng Q, Hu J, Zhu Y (2007) J Appl Polym Sci 106:837

    Article  CAS  Google Scholar 

  13. Heinrich G, Klüppel M, Vilgis TA (2002) Curr Opinion Solid State Mater Sci 6:195

    Article  CAS  Google Scholar 

  14. Takino H, Iwama S, Yamada Y (1997) Rubber Chem Technol 70:15

    CAS  Google Scholar 

  15. Hess WM, Chirico VE (1997) Rubber Chem Technol 50:301

    Google Scholar 

  16. Hess WM, Scott CE, Callan JE (1967) Rubber Chem Technol 40:371

    CAS  Google Scholar 

  17. Schuster RH, Meier J, Klüppel M (2000) Kautsch Gummi Kunstst 53:663

    CAS  Google Scholar 

  18. Le HH, Tiwari M, Ilisch S, Radusch H-J (2006) Plast Rubber Compos Macromol Eng 35:410

    Article  CAS  Google Scholar 

  19. Le HH, Ilisch S, Jakob B, Radusch HJ (2004) Rubber Chem Technol 77:147

    CAS  Google Scholar 

  20. Le HH, Ilisch S, Steinberger H, Radusch H-J (2008) Plast Rubber Compos Macromol Eng 37:367

    Article  CAS  Google Scholar 

  21. Ali Z, Le HH, Ilisch S, Busse K, Radusch H-J (2009) J Appl Polym Sci 113:667

    Article  CAS  Google Scholar 

  22. Le HH, Ilisch S, Radusch H-J (2009) Polymer 50:2294

    Article  CAS  Google Scholar 

  23. Kolesov IS, Kratz K, Lendlein A, Radusch H-J (2009) Polymer 50:5490

    Article  CAS  Google Scholar 

  24. Kolesov IS, Radusch H-J (2008) eXPRESS Polym Lett 2:461

    Article  CAS  Google Scholar 

  25. Le HH, Ilisch S, Radusch H-J (2010) Electrically stimulatable shape-memory materials based on carbon black filled ethylene-octene copolymer (EOC) and their blends. 10th European symposium on polymer blends, March 7–10, 2010. Dresden, Germany, Book of abstracts, p. 94

  26. Le HH, Tiwari M, Ilisch S, Radusch H-J (2005) Kautsch Gummi Kunstst 58:575

    CAS  Google Scholar 

  27. Stumpe NA, Railsback HE (1964) Rubber World 151:41

    Google Scholar 

  28. Zhang J, Feng S (2003) J Appl Polym Sci 89:3471

    Article  CAS  Google Scholar 

  29. Kantor Y, Webman I (1984) Phys Rev Lett 52:1891

    Article  ADS  Google Scholar 

  30. Klüppel M (2003) Adv Polym Sci 164:1

    Google Scholar 

  31. Kohjiya S, Katoh A, Suda T, Shimanuki J, Ikeda Y (2006) Polymer 47:3298

    Article  CAS  Google Scholar 

  32. Kaufman S, Slichter WP, Davis DD (1971) J Polym Sci A 9:829

    CAS  Google Scholar 

  33. Vieweg S, Unger R, Hempel E, Donth EJ (1998) Non-Cryst Solids 235:470

    Article  ADS  Google Scholar 

  34. Arrighi V, Higgins JS, Burgess AN, Floudas G (1998) Polymer 39:6369

    Article  CAS  Google Scholar 

  35. Litvinov VM, Spiess HW (1991) Makromol Chem 192:3005

    Article  CAS  Google Scholar 

  36. Srinivasan N, Bökamp K, Vennemann N (2005) Kautsch Gummi Kunstst 58:650

    CAS  Google Scholar 

  37. Le HH, Heidenreich D, Kolesov IS, Ilisch S, Radusch H-J (2009) J Appl Polym Sci. doi:30769

  38. Tang H, Piao JH, Yang HL (1993) J Appl Polym Sci 48:1795

    Article  CAS  Google Scholar 

  39. Klason C, Kubat J (1975) J Appl Polym Sci 19:831

    Article  CAS  Google Scholar 

  40. Narkis M, Ram A, Flashner F (1978) Polym Eng Sci 18:649

    Article  CAS  Google Scholar 

  41. Voet A (1981) Rubber Chem Technol 54:42

    CAS  Google Scholar 

  42. Das NC, Chaki TK, Khastgir D (2003) J Appl Polym Sci 90:2073

    Article  CAS  Google Scholar 

  43. Zhang J, Feng S (2003) J Appl Polym Sci 90:3889

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Le.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, H.H., Kolesov, I., Ali, Z. et al. Effect of filler dispersion degree on the Joule heating stimulated recovery behaviour of nanocomposites. J Mater Sci 45, 5851–5859 (2010). https://doi.org/10.1007/s10853-010-4661-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4661-7

Keywords

Navigation