Advertisement

Journal of Materials Science

, Volume 45, Issue 21, pp 5814–5819 | Cite as

Facile fabrication of nano-hydroxyapatite/silk fibroin composite via a simplified coprecipitation route

  • Chunquan Fan
  • Jiashun Li
  • Guohua Xu
  • Hailong He
  • Xiaojian Ye
  • Yuyun Chen
  • Xiaohai Sheng
  • Jianwei Fu
  • Dannong He
Article

Abstract

Nano-hydroxyapatite/silk fibroin (n-HA/SF) composite was successfully fabricated based on a simplified coprecipitation route. In detail, the degummed SF was first dissolved in CaCl2 aqueous/ethanol solution without desalting procedure, and then (NH4)2HPO4 solution and NH4OH were dropped into the above solution to form n-HA/SF composite. The structure and morphology of n-HA/SF composite were investigated by Transmission electron microscopy, Fourier transform infrared spectrometry, energy dispersive X-Ray spectrum, X-ray diffraction, and thermogravimetric analyses. Results indicate that the inorganic phase is carbonate-substituted HA with low crystallinity and similar to the crystals of human bone. The HA crystals have diameter of around 20–30 nm and length of about 200–500 nm. The content of SF in the composite is about 30%, and the two phases bonded each other strongly. In addition, a formation mechanism of n-HA/SF was proposed.

Keywords

Polylactic Acid Silk Fibroin Silk Fiber Initial Decomposition Temperature 2HPO4 Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was sponsored by the National Key Basic Research Program of China (Grant No. 2009CB930000) and the Nanotechnology Program of Shanghai Science & Technology Committee, Shanghai (Grant No. 0852nm03100).

References

  1. 1.
    Du C, Cui FZ, Zhang W, Feng QL, Zhu XD, De Groot K (2000) J Biomed Mater Res A 50:518CrossRefGoogle Scholar
  2. 2.
    Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J (2001) Biomaterials 22:1705CrossRefPubMedGoogle Scholar
  3. 3.
    Mann S, Ozin GA (1996) Nature 365:499CrossRefADSGoogle Scholar
  4. 4.
    Stupp SI, Braun PV (1997) Science 277:1242CrossRefPubMedGoogle Scholar
  5. 5.
    Muthukumar M, Ober CK, Thomas EL (1997) Science 277:1225CrossRefGoogle Scholar
  6. 6.
    Chang MC, Ko CC, Douglas WH (2003) Biomaterials 24:2853CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang YZ, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT (2008) Biomaterials 29:4314CrossRefPubMedGoogle Scholar
  8. 8.
    Hu QL, Li BQ, Wang M, Shen JC (2004) Biomaterials 25:779CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang L, Li YB, Yang AP, Peng XL, Wang XJ, Zhang X (2005) J Mater Sci Mater Med 16:213CrossRefGoogle Scholar
  10. 10.
    Turco G, Marsich E, Bellomo F, Semeraro S, Donati I, Brun F, Grandolfo M, Accardo A, Paoletti S (2009) Biomacromolecules 10:1575CrossRefPubMedGoogle Scholar
  11. 11.
    Kasuga T, Ota Y, Nogami M, Abe Y (2001) Biomaterials 22:19CrossRefPubMedGoogle Scholar
  12. 12.
    Douglas T, Pamula E, Hauk D, Wiltfang J, Sivananthan S, Sherry E, Warnke PH (2009) J Mater Sci Mater Med 20:1909CrossRefPubMedGoogle Scholar
  13. 13.
    Wei J, Li YB, Chen WQ, Zuo Y (2003) J Mater Sci 38:3303. doi: 10.1023/A:1025194122977 CrossRefGoogle Scholar
  14. 14.
    Nemoto R, Wang L, Aoshima M, Senna M, Ikoma T, Tanaka J (2004) J Am Ceram Soc 87:1014CrossRefGoogle Scholar
  15. 15.
    Li YC, Cai YR, Kong XD, Yao JM (2008) Appl Surf Sci 255:1681CrossRefADSGoogle Scholar
  16. 16.
    Du CL, Jin J, Li YC, Kong XD, Wei KM, Yao JM (2009) Mater Sci Eng C 29:62CrossRefGoogle Scholar
  17. 17.
    Korematsu A, Furuzono T, Yasuda S, Tanaka J, Kishida A (2004) J Mater Sci 39:3221. doi: 10.1023/B:JMSC.0000025865.44900.74 CrossRefADSGoogle Scholar
  18. 18.
    Takeuchi A, Ohtsuki C, Miyazaki T, Ogata S, Tanihara M, Tanaka H, Furutani Y, Kinoshita H (2003) Key Eng Mater 31:240Google Scholar
  19. 19.
    Wang L, Nemoto R, Senna M (2004) J Eur Ceram Soc 24:2707CrossRefGoogle Scholar
  20. 20.
    Murugan R, Ramakrishna S (2004) Biomaterials 25:3829CrossRefPubMedGoogle Scholar
  21. 21.
    Rhee SH, Tanaka J (2002) J Mater Sci Mater Med 13:597CrossRefPubMedGoogle Scholar
  22. 22.
    Cao M, Wang Y, Guo C, Qi Y, Hu C (2004) Langmuir 20:4784CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang W, Liao SS, Cui FZ (2003) Chem. Mater 15:3221CrossRefGoogle Scholar
  24. 24.
    Ethirajan A, Ziener U, Landfester K (2009) Chem Mater 21:2218CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Chunquan Fan
    • 1
  • Jiashun Li
    • 1
  • Guohua Xu
    • 1
  • Hailong He
    • 1
  • Xiaojian Ye
    • 1
  • Yuyun Chen
    • 2
  • Xiaohai Sheng
    • 2
  • Jianwei Fu
    • 2
  • Dannong He
    • 2
  1. 1.Department of Orthopedic Surgery, Changzheng HospitalSecond Military Medical UniversityShanghaiPeople’s Republic of China
  2. 2.National Engineering Research Center for NanotechnologyShanghaiPeople’s Republic of China

Personalised recommendations