Journal of Materials Science

, Volume 45, Issue 17, pp 4594–4605 | Cite as

Consolidation of ultrafine-grained Cu powder and nanostructured Cu–(2.5–10) vol%Al2O3 composite powders by powder compact forging

  • A. Mukhtar
  • D. L. Zhang
  • C. Kong
  • P. Munroe
Ultrafine Grained Materials


An as-received ultrafine-grained Cu powder and four nanostructured Cu–(2.5–10) vol%Al2O3 composite powders produced by high-energy mechanical milling of mixtures of the Cu powder and an Al2O3 nanopowder were consolidated using warm powder compaction followed by open die powder compact forging. The circular discs produced in the experiments achieved full densification. Tensile testing of the specimens cut from the forged discs showed that the Cu-forged disc had a fairly high yield strength of 330 MPa, UTS of 340 MPa and a plastic strain to fracture of 15%, but the Cu–Al2O3 composite-forged discs did not show any macroscopic plastic yielding. The fracture strength of the composite-forged discs decreased almost linearly with the increase of the volume fraction of Al2O3 nanoparticles. This study shows that a high level of consolidation of the ultrafine-grained Cu powder and the nanostructured Cu–2.5 vol%Al2O3 composite powder has been achieved by warm powder compacting at 350 °C and powder compact forging at 500 and 700 °C. However, this is not true for the nanostructured Cu–(5, 7.5 and 10) vol%Al2O3 composite powders, possibly due to their higher powder particle hardness at elevated temperatures in the range of 350–800 °C.


Al2O3 Powder Compact Powder Particle Composite Powder Scanning Electron Microscopy Examination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zhang DL, Koch CC, Scattergood RO (2009) Mater Sci Eng A 516:270CrossRefGoogle Scholar
  2. 2.
    Zhang DL, Muhktar A, Nadakuduru VN, Raynova S (2009) Int J Mater Res (formerly Z Metallkd) 100:1720CrossRefGoogle Scholar
  3. 3.
    Haouaoui M, Karaman I, Maier HJ, Hartwig KT (2004) Met Mater Trans 35A:2935CrossRefGoogle Scholar
  4. 4.
    Karaman I, Haouaoui M, Maier HJ (2007) J Mater Sci 42:1561. doi: 10.1007/s10853-006-0987-6 CrossRefADSGoogle Scholar
  5. 5.
    Xu W, Honma T, Wu X, Ringer SP, Xia K (2007) Appl Phys Lett 91:031901CrossRefADSGoogle Scholar
  6. 6.
    Lee Z, Zhou F, Valiev RZ, Lavernia EJ, Nutt SR (2004) Scr Mater 51:209CrossRefGoogle Scholar
  7. 7.
    Alexandrov IV, Zhu YT, Lowe TC, Islamgaliev RK, Valiev RZ (1998) NanoStruct Mater 10:45CrossRefGoogle Scholar
  8. 8.
    Stolyarov VV, Zhu YT, Lowe TC, Islamgaliev RK, Valiev RZ (2000) Mater Sci Eng A 282:78CrossRefGoogle Scholar
  9. 9.
    Yavari AR, Botta Filho WJ, Rodrigues CAD, Cardoso C, Valiev RZ (2002) Scr Mater 46:711CrossRefGoogle Scholar
  10. 10.
    Zhang DL, Raynova S, Nadakuduru V, Cao P, Gabbitas B, Robinson B (2009) Mater Sci Forum 618–619:513CrossRefGoogle Scholar
  11. 11.
    Shaik GR, Milligan WW (1997) Met Mater Trans A 28A:895Google Scholar
  12. 12.
    Champion Y, Langlois C, Guérin-Mailly S, Langlois P, Bonnentien J, Hÿtch M (2003) Science 300:310CrossRefADSPubMedGoogle Scholar
  13. 13.
    Correia JB, Marques MT, Oliveira MM, Matteazzi P (2001) Mater Sci Forum 360–362:241CrossRefGoogle Scholar
  14. 14.
    Witkin DB, Lavernia EJ (2006) Prog Mater Sci 51:1CrossRefGoogle Scholar
  15. 15.
    Botcharova E, Freudenberger J, Schultz L (2006) Acta Mater 54:3333CrossRefGoogle Scholar
  16. 16.
    He L, Allard LF, Breder K, Ma E (2000) J Mater Res 15:904CrossRefADSGoogle Scholar
  17. 17.
    Srivatsan TS, Ravi BG, Naruka AS, Petraroli M, Kalyanaraman R, Sudarshan TS (2002) Mater Des 23:291Google Scholar
  18. 18.
    Molénat G, Thomas M, Galy J, Couret A (2007) Adv Eng Mater 9:667CrossRefGoogle Scholar
  19. 19.
    Um TY, Abe T, Sumi S (1999) J Mater Synth Process 7:303CrossRefGoogle Scholar
  20. 20.
    Mei BC, Miyamoto Y (2001) Metall Mater Trans 32A:843CrossRefGoogle Scholar
  21. 21.
    Youssef KM, Scattergood RO, Murty KL, Koch CC (2004) Appl Phys Lett 85:929CrossRefADSGoogle Scholar
  22. 22.
    Zhang DL, Raynova S, Koch CC, Scattergood RO, Youssef KM (2005) Mater Sci Eng A 410–411:375Google Scholar
  23. 23.
    Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Scr Mater 54:251CrossRefGoogle Scholar
  24. 24.
    Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Koch CC, Trociewitz UP, Han K (2005) Acta Mater 53:1521CrossRefGoogle Scholar
  25. 25.
    Zhang DL, Mukhtar A, Kong C, Munroe P (2009) J Phys: Conf Ser 144:012028CrossRefADSGoogle Scholar
  26. 26.
    Williamson GK, Hall W (1953) Acta Metall 2:22Google Scholar
  27. 27.
    Mukhtar A, Zhang DL, Kong C, Munroe P (2009) J Phys: Conf Ser 144:012082CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Waikato Centre for Advanced Materials (WaiCAM), Department of EngineeringThe University of WaikatoHamiltonNew Zealand
  2. 2.Electron Microscope UnitThe University of New South WalesSydneyAustralia

Personalised recommendations