Journal of Materials Science

, Volume 45, Issue 17, pp 4631–4644 | Cite as

Microstructure evolution of CuZr polycrystals processed by high-pressure torsion

  • Milan Dopita
  • Miloš Janeček
  • Radomír Kužel
  • Hans Jürgen Seifert
  • Sergey Dobatkin
Ultrafine Grained Materials


The microstructure evolution of extruded Cu–0.18 wt% Zr polycrystals processed by high-pressure torsion (HPT) at room temperature at the pressure of 4 GPa and the different number of the HPT revolutions (i.e. different strain) was investigated using the combination of the electron back-scatter diffraction, microhardness measurements and the X-ray diffraction. A significant transition from the inhomogeneous microstructure after few HPT revolutions into the homogeneous equiaxed microstructure with increasing number of HPT rotations was observed. HPT straining leads to the grain size refinement by a factor more than 100 after the 25 HPT revolutions. Moreover, the EBSD revealed an increase in the fraction of high-angle grain boundaries (HAGBs) with increasing HPT straining reaching the value of 70% after 25 revolutions. Additionally, a slight increase of the twin-related CSL Σ3 grain boundaries occurred during the microstructure refinement. The microhardness measurements confirmed the billet radial inhomogeneity at early stages of the HPT straining, whereas with increasing number of the HPT rotations, causing the specimen fragmentation and homogenization, the microhardness values increased. The average crystallite size and the average dislocation density in individual specimens determined by the XRD diffraction were in the range of approximately 100–200 nm and 2 × 1015 m−2, respectively. Moreover, XRD measurements confirmed the absence of residual stresses in all specimens.


Severe Plastic Deformation CuZr Misorientation Distribution EBSD Measurement Line Profile Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge funding of the Ministry of Education of the Czech Republic through the research program MSM 0021620834 and by the grants IAA101120803 and KAN400720701 of the Academy of Sciences of the Czech Republic. One of the authors M.D. acknowledges the financial support of this work through the Dr. Erich-Krüger-Stifftung.


  1. 1.
    Lowe TC, Valiev RZ (eds) (2000) Investigations and applications of severe plastic deformation. Kluwer Academic Publishing, Dordrecht, The Netherlands, p 395Google Scholar
  2. 2.
    Zehetbauer MJ, Valiev RZ (eds) (2003) Nanomaterials by severe plastic deformation. Wiley-VCH, Vienna, Austria, p 850Google Scholar
  3. 3.
    Horita Z (ed) (2005) Nanomaterials by severe plastic deformation. Trans Tech Publications Ltd., Switzerland, p 1030Google Scholar
  4. 4.
    Estrin Y, Maier HJ (eds) (2008) Nanomaterials by severe plastic deformation. Trans Tech Publications Ltd, Switzerland, p 1094Google Scholar
  5. 5.
    Neishi K, Horita Z, Langdon TG (2001) Scripta Mater 45:965CrossRefGoogle Scholar
  6. 6.
    Patlan V, Suzuki Y, Kitagawa K, Kopylov VI, Vinogradov A (2002) Acta Mater 50:1639CrossRefGoogle Scholar
  7. 7.
    Vinogradov A, Ishida T, Kitagawa K, Kopylov VI (2005) Acta Mater 53:2181CrossRefGoogle Scholar
  8. 8.
    He W, Wang E, Hu L, Yu Y, Sun H (2008) J Mater Process Technol 208:205CrossRefGoogle Scholar
  9. 9.
    Kužel R, Cherkaska V, Matěj Z, Janeček M, Čížek J, Dopita M (2008) Z Kristallogr Suppl 27:73Google Scholar
  10. 10.
    Dopita M, Janeček M, Rafaja D, Uhlíř J, Matěj Z, Kužel R (2009) Int J Mater Res 100(6):785Google Scholar
  11. 11.
    Janeček M, Čížek J, Dopita M, Král R, Srba O (2008) Mater Sci Forum 584–586:440CrossRefGoogle Scholar
  12. 12.
    Kužel R, Janeček M, Matěj Z, Čížek J, Dopita M, Srba O (2009) Metall Mater Trans 41A:1174Google Scholar
  13. 13.
    Bridgman PW (1943) J Appl Phys 14:273CrossRefADSGoogle Scholar
  14. 14.
    Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893CrossRefGoogle Scholar
  15. 15.
    Matěj Z, Kužel R (2009) MStruct - program/library for MicroStructure analysis by powder diffraction, available from
  16. 16.
    Kužel R, Matěj Z, Nichtová L (2010) Powder Diffr (to be published)Google Scholar
  17. 17.
    Harris GB (1952) Philos Mag 43:113Google Scholar
  18. 18.
    Zhilyaev AP, Nurislamova GV, Kim BK, Baro MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753CrossRefGoogle Scholar
  19. 19.
    Vorhauer A, Pippan R (2004) Scripta Mater 51:921CrossRefGoogle Scholar
  20. 20.
    Jiang H, Zhu YT, Butt DP, Alexandrov IV, Lowe TC (2000) Mater Sci Eng A 290:128CrossRefGoogle Scholar
  21. 21.
    Yang Z, Welzel U (2005) Mater Lett 59:3406CrossRefGoogle Scholar
  22. 22.
    Zhilyaev AP, McNelley TR, Langdon TG (2007) J Mater Sci 42:1517. doi: 10.1007/s10853-006-0628-0 CrossRefADSGoogle Scholar
  23. 23.
    Horita Z, Langdon TG (2005) Mater Sci Eng A 410–411:422Google Scholar
  24. 24.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  25. 25.
    Hebesberger T, Stüwe HP, Vorhauer A, Wetcher F, Pippan R (2005) Acta Mater 53:393CrossRefGoogle Scholar
  26. 26.
    Ivanisenko Y, Valiev RZ, Fecht H-J (2005) Mater Sci Eng A 390:159CrossRefGoogle Scholar
  27. 27.
    Humphreys FJ (1996) Hetherly: recrystallization and related annealing phenomena. Pergamon, London, p 496Google Scholar
  28. 28.
    Zhilyaev AP, Kim B-K, Szpunar JA, Baro MD, Langdon TG (2005) Mater Sci Eng A 391:377CrossRefGoogle Scholar
  29. 29.
    Mackenzie JK (1964) Acta Metall 12:223CrossRefGoogle Scholar
  30. 30.
    Brandon DG (1966) Acta Metall 14:1479CrossRefGoogle Scholar
  31. 31.
    Zhilyaev AP, Baro MD, Horita Z, Szpunar JA, Langdon TG (2004) Russ Metall 1:60Google Scholar
  32. 32.
    Molodova X, Khorashadizadeh A, Gottstein G, Winning M, Hellmig RJ (2007) Int J Mater Res 98:1Google Scholar
  33. 33.
    Wang N, Ch Li, Du Z, Wang F, Zhang W (2006) Comput Coupling Phase Diagr Thermochem 30:461Google Scholar
  34. 34.
    Horita Z, Langdon TG (2005) Mater Sci Eng A 410–411:422Google Scholar
  35. 35.
    Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203CrossRefGoogle Scholar
  36. 36.
    Liao XZ, Zhao YH, Zhu YT, Valiev RZ (2004) J Appl Phys 96:636CrossRefADSGoogle Scholar
  37. 37.
    Balogh L, Ungar T, Zhao Y, Zhu YT, Horita Z, Xu C, Lagdon TG (2008) Acta Mater 56:809CrossRefGoogle Scholar
  38. 38.
    Zhao YH, Horita Z, Langdon TG, Zhu YT (2008) Mater Sci Eng A 474:342CrossRefGoogle Scholar
  39. 39.
    Ungar T, Tichy G, Gubiza J, Hellmig RJ (2005) Powder Diffr 20:366CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Milan Dopita
    • 1
    • 3
  • Miloš Janeček
    • 2
  • Radomír Kužel
    • 3
  • Hans Jürgen Seifert
    • 1
  • Sergey Dobatkin
    • 4
  1. 1.TU Bergakademie Freiberg, Institute of Materials ScienceFreibergGermany
  2. 2.Department of Physics of MaterialsFaculty of Mathematics and Physics of the Charles University in PraguePragueCzech Republic
  3. 3.Department of Condensed Matter PhysicsFaculty of Mathematics and Physics of the Charles University in PraguePragueCzech Republic
  4. 4.A. A. Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations