Skip to main content
Log in

The compression-after-impact strength of woven and non-crimp fabric reinforced composites subjected to long-term water immersion ageing

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The current work examines the durability of composites reinforced with glass fibre woven fabric as well as non-crimp fabrics (NCF) immersed in water at 43, 65 and 93 °C for up to 2.5 years. Low velocity normal impact has been induced at various time intervals before and after water immersion at energy levels of 2.5, 5 and 10 J. Following impact the plates were tested statically in compression to determine the residual strength for assessment of damage tolerance. The compression strength suffered significant reductions from the water absorption and the low velocity impact with values being dependent to the time of immersion and the water temperature. A parallel behaviour was monitored, in terms of strength reduction over time, of plates impacted prior to water immersion with the plates that contain no damage. For specimens where impact damage introduced after water immersion lower compression-after-impact (CAI) strength was observed at the same energy levels. An increase in damage diameter was evident, regardless the reinforcement type, though the gradually produced greater density of through thickness damage was responsible for the significant lower compression strength values. The presence of 0° fibres for the NCF composites as the main load bearing element dictated the sensitivity to impact as well as the corresponding residual strength. For composites with woven reinforcement, damage was contained and localized by the fabric weave and effective stress redistribution seemed to be the mechanism for the relatively higher residual strengths obtained. A semi-empirical model has been used with high accuracy in fitting the given experimental data and draw conclusions from the comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Tzetzis D, Hogg PJ (2008) Mater Des 29(2):436

    CAS  Google Scholar 

  2. De Freitas M, Reis L (1998) Compos Struct 42(4):365

    Article  Google Scholar 

  3. Xiong Y, Poon C, Straznicky PV, Vietinghoff H (1995) Compos Struct 30(4):357

    Article  Google Scholar 

  4. Baker AA, Jones R, Callinan RJ (1985) Compos Struct 4(1):15

    Article  Google Scholar 

  5. NASA (1983) Standard test for toughened resin composites. NASA Reference Publication 1092

  6. Boeing (1988) Advanced composite compression test. Boeing Specification Support Standard BSS 7260

  7. SACMA (1994) Recommended Methods SRM 2-94. Suppliers of Advanced Composites Materials Association

  8. Curtis PT (1988) CRAG test methods for the measurements of the engineering properties of fibre reinforced plastics. Royal Aerospace Establishment Technical Report TR88012

  9. Delfosse D, Poursartip A, Coxon BR, Dost EF (1995) Compos Mater: Fatigue Fract 5:333. ASTM STP 1230

    Google Scholar 

  10. Hawyes VJ, Curtis PT, Soutis C (2001) Compos Part A: Appl Sci Manuf 32(9):1263

    Article  Google Scholar 

  11. Duarte A, Herszberg I, Paton R (1999) Compos Struct 47(1–4):753

    Article  Google Scholar 

  12. Dorey G, Bishop SM, Curtis PT (1985) Compos Sci Technol 23(3):221

    Article  CAS  Google Scholar 

  13. Habib FA (2001) Compos Struct 53:309

    Article  Google Scholar 

  14. Bishop SM (1985) Compos Struct 3:295

  15. Kim J, Shioya M, Kobayashi H, Kaneko J, Kido M (2004) Compos Sci Technol 64:2221

    Article  CAS  Google Scholar 

  16. Kim JK, Sham ML (2000) Compos Sci Technol 60:745

    Article  Google Scholar 

  17. Bibo GA, Hogg PJ (1998) Key Eng Mater 141–143:93

    Article  Google Scholar 

  18. Cantwell WJ, Morton J (1991) Composites 22(5):347

    Article  CAS  Google Scholar 

  19. Bank LC, Gentry TR, Barkatt A (1995) J Reinf Plast Compos 14:559

    CAS  Google Scholar 

  20. Berketis K, Tzetzis D (2009) J Mater Sci 44:3578. doi:10.1007/s10853-009-3485-9

    Article  CAS  ADS  Google Scholar 

  21. Morii T, Hamada H, Maekawa Z, Tanimoto T, Hirano T, Kiyosumi K (1983) Polym Compos 1:3744

    Google Scholar 

  22. Morii T, Hamada H, Maekawa Z, Tanimoto T, Hirano T, Kiyosumi K (1994) Polym Compos 15:206

    Article  CAS  Google Scholar 

  23. Berketis K, Tzetzis D, Hogg PJ (2008) Mater Des 29:1300

    CAS  Google Scholar 

  24. Shoeppner GA, Abrate S (2000) Compos Part A 31:903

    Article  Google Scholar 

  25. Sanchez-Saez S, Barbero E, Zaera R, Navarro C (2005) Compos Sci Technol 65:1911

    Article  CAS  Google Scholar 

  26. Nettles AT, Hodge AJ (1991) Compression-after-impact testing of thin composite materials. In: Proceedings of the 23rd international SAMPE technical conference, pp 177–183

  27. Liu D, Raju BB, Dang X (1998) Int J Impact Eng 21:837

    Article  Google Scholar 

  28. Sjoblom PO, Hwang B (1989) Compression-after-impact: the $5000 data point. In: International SAMPE Symposium Exhibition, vol 34, pp 1411–1421

  29. Prichard JC, Hogg PJ (1990) Composites 21:503

    Article  CAS  Google Scholar 

  30. Prichard JC, Hogg PJ, Stone DL (1992) A miniaturized post impact compression test. Department of Materials, Queen Mary and Westfield College in co-operation with British Aerospace and CIBA Geigy, pp 1–8

  31. Zhou G (1996) Compos Struct 35:171

    Article  Google Scholar 

  32. Berketis K, Tzetzis D, Hogg PJ (2009) Polym Compos 30(8):1043

    Article  CAS  Google Scholar 

  33. Berketis K, Tzetzis D (2009) In: Lechkov M, Prandzheva S (eds) Encyclopedia of polymer composites. Nova Science Publishers, Inc, New York. ISBN: 978-1-60741-717-0

  34. Schutte CL (1994) Mater Sci Eng R 13:265

    Article  Google Scholar 

  35. Belan F, Bellenger V, Mortaigne B (1997) Polym Degrad Stab 56:93

    Article  CAS  Google Scholar 

  36. Caprino G (1983) J Compos Mater 18:508

    Article  Google Scholar 

  37. Komai K, Minoshima K, Yamasaki H (1995) Evaluation of low-velocity impact induced delamination by scanning acoustic microscope and influence of water absorption on delamination and compression after impact of CFRP. In: Emri I, Knauss WG (eds) First international conference on the mechanics of time dependent materials, SEM, pp 287–292

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Berketis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berketis, K., Tzetzis, D. The compression-after-impact strength of woven and non-crimp fabric reinforced composites subjected to long-term water immersion ageing. J Mater Sci 45, 5611–5623 (2010). https://doi.org/10.1007/s10853-010-4626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4626-x

Keywords

Navigation