Journal of Materials Science

, Volume 45, Issue 20, pp 5591–5597 | Cite as

Photochemical modification of single-walled carbon nanotubes using HPHMP photoinitiator for enhanced organic solvent dispersion

  • Mirza Nadeem Ahmad
  • Maria Nadeem
  • Yuhong Ma
  • Wantai Yang


Photochemical modification of single-walled carbon nanotubes (SWCNTs) was carried out by covalent attachment of 2-propanol-2-yl radicals on the surface of SWCNTs, which were engendered by the photolysis of 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one (HPHMP) under ultraviolet (UV) light. Pristine single-walled carbon nanotubes (p-SWCNTs) were dispersed in acetone along with HPHMP photoinitiator. After that, the mixture was irradiated by UV light to generate the free radicals which were introduced onto the surface of SWCNTs. The modification of SWCNTs was supported by UV/visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, thermal gravimetric analysis–mass spectrometry (TGA–MS), and transmission electron microscopy (TEM). UV/visible results revealed the loss of van Hove singularities due to covalent modification. The modification was further verified by FT-IR showing the signals at 3421 and 1100 cm−1 due to stretching and bending of O–H group, respectively. Moreover, other peaks at 2927 and 2858 cm−1 indicated the asymmetric and symmetric stretching modes of aliphatic C–H bond, respectively. Raman spectra illustrated that the intensity ratio of the tangential mode to the disorder mode (I G/I D), for modified SWCNTs (F-SWCNTs), decreased nearly four times than p-SWCNTs. TGA–MS also evidenced the signal corresponding to m/z 59 at 400 °C indicating the presence of 2-propanol-2-yl groups. TEM and dispersibility data demonstrated that the sidewall modification detached the bundled structure, enhanced the dispersion in common organic solvents and retained the original size of SWCNTs without hefty modification, which could cut or damage the nanotubes.


Carbon Nanotubes Thermal Gravimetric Analysis Covalent Modification Common Organic Solvent Radial Breathing Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Iijima S (1991) Nature 354:56CrossRefADSGoogle Scholar
  2. 2.
    Nishikawa M et al (2009) J Mater Sci 44(1):339. doi: 10.1007/s10853-008-3127-7 CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Chen RJ, Zhang Y, Wang D (2001) J Am Chem Soc 123:3838CrossRefPubMedGoogle Scholar
  4. 4.
    Barthos R, Méhn D, Demortier A (2005) Carbon 43:321CrossRefGoogle Scholar
  5. 5.
    Wang Y, Iqbal Z, Mitra S (2005) Carbon 43(5):1015CrossRefGoogle Scholar
  6. 6.
    Marcux PR, Schreiber J, Batail P (2002) Phys Chem Chem Phys 4:2278CrossRefGoogle Scholar
  7. 7.
    Hu H, Zhao B, Hamon MA (2003) J Am Chem Soc 125:14893CrossRefPubMedGoogle Scholar
  8. 8.
    Mickelson ET, Huffman CB, Rinzler AG (1998) Chem Phys Lett 296:188CrossRefADSGoogle Scholar
  9. 9.
    Tasis D, Tagmatarchis N, Bianco A (2006) Chem Rev 106:1105CrossRefPubMedGoogle Scholar
  10. 10.
    Liu M, Yang Y, Zhu T (2007) J Phys Chem 111(6C):2379Google Scholar
  11. 11.
    Nakamura T, Ishihara M (2004) Diam Relat Mater 13(11–12):1971CrossRefGoogle Scholar
  12. 12.
    Nakamura T, Ohana T, Ishihara M (2008) Diam Relat Mater 17(4–5):559CrossRefGoogle Scholar
  13. 13.
    Kovtyukhova NI, Mallouk TE, Pan L (2003) J Am Chem Soc 125:9761CrossRefPubMedGoogle Scholar
  14. 14.
    Larsen RM (2009) J Mater Sci 44(3):799. doi: 10.1007/s10853-008-3155-3 CrossRefADSGoogle Scholar
  15. 15.
    Najafi E, Kim J, Han S (2006) Colloids Surf 284(A):373Google Scholar
  16. 16.
    Umek P, Seo J, Hernadi K (2003) Chem Mater 15(25):4751CrossRefGoogle Scholar
  17. 17.
    Wu W, Zhang S, Li Y (2003) Macromolecules 36(17):6286CrossRefADSGoogle Scholar
  18. 18.
    Pavia D, Lampman G et al (2009) Introduction to spectroscopy. Cole Pub Co. Ltd, FlorenceGoogle Scholar
  19. 19.
    Liu M, Yang Y, Zhu T (2005) Carbon 43(7):1470CrossRefGoogle Scholar
  20. 20.
    Ahmad MN, Xie JY, Ma YH, Yang WT (2010) New Carbon Mater 25(2):134CrossRefGoogle Scholar
  21. 21.
    Peng H, Alemany L, Margrave J (2003) J Am Chem Soc 125(49):15174CrossRefPubMedGoogle Scholar
  22. 22.
    Vacek K, Geimer J (1999) J Chem Soc Perk Trans 2(11):2469Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mirza Nadeem Ahmad
    • 1
  • Maria Nadeem
    • 1
  • Yuhong Ma
    • 1
  • Wantai Yang
    • 1
  1. 1.State Key Laboratory of Chemical Resource Engineering and College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations