Journal of Materials Science

, Volume 45, Issue 20, pp 5567–5573 | Cite as

Hierarchical mesoporous silica prepared from ethyl-cyanoethyl cellulose cholesteric liquid crystalline phase



Porous silica with hierarchical structures was prepared from ethyl-cyanoethyl cellulose/poly(3-(methacryloyloxy)propyl-trimethoxysilane) (E-CE)C/P(MPTOS) composites with fixed cholesteric liquid crystalline (LC) phase. The scanning and transmission electron microscopy (SEM and TEM) and N2 sorption measurements results indicate that the silica prepared from cholesteric LC composites is of hierarchical macro-, meso- and micro-porous structures, and the average pore size of the silica can be tailored by the content of the cholesteric LC phase in the (E-CE)C/P(MPTOS) composites. The resultant silicas have high specific surface area with the highest value of 837 m2/g at the pore volume of 0.83 cm3/g. This approach provides a new choice for the preparation of porous silica materials, especially from the templates that are not compatible with aqueous system.


Mesoporous Silica Average Pore Size Polarize Optical Microscope Silica Precursor Methacryloyloxy 



Financial supports of National Natural Scientific Foundation of China (NNSFC) (Grant No. 50821062) and the Project of Knowledge Innovation Program of Chinese Academy of Sciences are gratefully acknowledged.


  1. 1.
    Huh S, Chen HT, Wiench JW, Pruski M, Lin VSY (2005) Angew Chem Int Ed 44:1826CrossRefGoogle Scholar
  2. 2.
    Mattigod SV, Feng XD, Fryxell GE, Liu J, Gong ML (1999) Sep Sci Technol 34:2329CrossRefGoogle Scholar
  3. 3.
    Newalkar BL, Choudary NV, Kumar P, Komarneni S, Bhat TSG (2002) Chem Mater 14:304CrossRefGoogle Scholar
  4. 4.
    Gabashvili A, Medina DD, Gedanken A, Mastai Y (2007) J Phys Chem B 111:11105CrossRefPubMedGoogle Scholar
  5. 5.
    Giri S, Trewyn BG, Stellmaker MP, Lin VSY (2005) Angew Chem Int Ed 44:5038CrossRefGoogle Scholar
  6. 6.
    Yang Q, Wang SH, Fan PW et al (2005) Chem Mater 17:5999CrossRefGoogle Scholar
  7. 7.
    Kim J, Lee JE, Lee J et al (2006) J Am Chem Soc 128:688CrossRefPubMedGoogle Scholar
  8. 8.
    Slowing II, Trewyn BG, Giri S, Lin VSY (2007) Adv Funct Mater 17:1225CrossRefGoogle Scholar
  9. 9.
    de Sousa A, Maria DA, de Sousa RG, de Sousa EMB (2010) J Mater Sci 45:1478. doi: 10.1007/s10853-009-4106-3 CrossRefADSGoogle Scholar
  10. 10.
    Yantasee W, Lin YH, Li XH, Fryxell GE, Zemanian TS, Viswanathan VV (2003) Analyst 128:899CrossRefADSGoogle Scholar
  11. 11.
    Balaji T, Sasidharan M, Matsunaga H (2005) Analyst 130:1162CrossRefPubMedADSGoogle Scholar
  12. 12.
    Goettmann F, Moores A, Boissiere C, Le Floch P, Sanchez C (2005) Small 1:636CrossRefPubMedGoogle Scholar
  13. 13.
    Soler-illia GJD, Sanchez C, Lebeau B, Patarin J (2002) Chem Rev 102:4093CrossRefPubMedGoogle Scholar
  14. 14.
    Jung JH, Ono Y, Hanabusa K, Shinkai S (2000) J Am Chem Soc 122:5008CrossRefGoogle Scholar
  15. 15.
    Che S, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsumi T (2004) Nature 429:281CrossRefPubMedADSGoogle Scholar
  16. 16.
    Huo QS, Margolese DI, Stucky GD (1996) Chem Mater 8:1147CrossRefGoogle Scholar
  17. 17.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710CrossRefADSGoogle Scholar
  18. 18.
    Tanev PT, Pinnavaia TJ (1995) Science 267:865CrossRefPubMedADSGoogle Scholar
  19. 19.
    Chen A, Komura M, Kamata K, Iyoda T (2008) Adv Mater 20:763CrossRefGoogle Scholar
  20. 20.
    Goltner CG, Henke S, Weissenberger MC, Antonietti M (1998) Angew Chem Int Ed 37:613CrossRefGoogle Scholar
  21. 21.
    Zhao DY, Feng JL, Huo QS et al (1998) Science 279:548CrossRefPubMedADSGoogle Scholar
  22. 22.
    Tirumala VR, Pai RA, Agarwal S et al (2007) Chem Mater 19:5868CrossRefGoogle Scholar
  23. 23.
    Niu DC, Li YS, Dong WJ, Zhao WR, Li L, Shi JL (2009) J Mater Sci 44:6519. doi: 10.1007/s10853-009-3675-5 CrossRefADSGoogle Scholar
  24. 24.
    Han BH, Antonietti M (2002) Chem Mater 14:3477CrossRefGoogle Scholar
  25. 25.
    Kessel S, Thomas A, Borner HG (2007) Angew Chem Int Ed 46:9023CrossRefGoogle Scholar
  26. 26.
    Polarz S, Smarsly B, Bronstein L, Antonietti M (2001) Angew Chem Int Ed 40:4417CrossRefGoogle Scholar
  27. 27.
    Thomas A, Antonietti M (2003) Adv Funct Mater 13:763CrossRefGoogle Scholar
  28. 28.
    Fowler CE, Shenton W, Stubbs G, Mann S (2001) Adv Mater 13:1266CrossRefGoogle Scholar
  29. 29.
    Davis SA, Burkett SL, Mendelson NH, Mann S (1997) Nature 385:420CrossRefADSGoogle Scholar
  30. 30.
    Livage J, Coradin T, Roux C (2001) J Phys-Condens Mat 13:R673CrossRefADSGoogle Scholar
  31. 31.
    Valtchev VP, Smaihi M, Faust AC, Vidal L (2004) Chem Mater 16:1350CrossRefGoogle Scholar
  32. 32.
    Sapei L, Noeske R, Strauch P, Paris O (2008) Chem Mater 20:2020CrossRefGoogle Scholar
  33. 33.
    Dujardin E, Blaseby M, Mann S (2003) J Mater Chem 13:696CrossRefGoogle Scholar
  34. 34.
    Wang LG, Huang Y (2001) Liq Cryst 28:1673CrossRefGoogle Scholar
  35. 35.
    Wang LG, Huang Y (2002) Macromolecules 35:3111CrossRefADSGoogle Scholar
  36. 36.
    Wang LG, Huang Y (2000) Macromolecules 33:7062CrossRefADSGoogle Scholar
  37. 37.
    Wang LG, Huang Y (2004) Macromolecules 37:303CrossRefADSGoogle Scholar
  38. 38.
    Huang Y, Jiang SH (1992) Polym Bull 27:535CrossRefGoogle Scholar
  39. 39.
    Liu L, Tian M, Zhang W, Zhang L, Mark JE (2007) Polymer 48:3201CrossRefGoogle Scholar
  40. 40.
    Ohlberg SM, Alexander LE, Warrick EL (1958) J Polym Sci 27:1CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.National Engineering Research Center of PlasticsTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingChina

Personalised recommendations