Advertisement

Journal of Materials Science

, Volume 45, Issue 20, pp 5502–5511 | Cite as

Degradation of 5 mol% yttria–zirconia by intergranular cracking in water at 300 °C

  • W. Vandermeulen
  • R.-W. Bosch
  • A. Leenaers
  • W. Van Renterghem
  • F. Snijkers
Article

Abstract

Zirconia–5 mol% yttria has been used successfully for pH sensing in high temperature water (≥300 °C). However, this material, which consists of the cubic phase with 2–8 vol.% intergranular tetragonal precipitates, is not always stable in this environment and some batches were found to be fragmented by cracking within a few days. To study this effect, different samples of the material were structurally characterised and exposed to 300 °C water. It was found that the susceptibility to cracking increased with the volume content of the intergranular precipitates. The cracking mechanism was explained by the stress-induced grain boundary cracking of the cubic phase, the stress being due to the water-induced martensitic transformation of the tetragonal precipitates. A model has been proposed which allows to interpret the dependence of crack formation propensity on the size of the tetragonal precipitates.

Keywords

Fracture Toughness Martensitic Transformation Tetragonal Phase Intergranular Crack Transgranular Fracture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bosch R-W, Wéber M, Vandermeulen W (2009) Power Plant Chem 11:30Google Scholar
  2. 2.
    Scott HG (1975) J Mater Sci 10:1527. doi: 10.1007/BF01031853 CrossRefADSGoogle Scholar
  3. 3.
    Stubican VS, Hink RC, Pray SP (1978) J Am Ceram Soc 61:17CrossRefGoogle Scholar
  4. 4.
    Heuer H, Rüle M (1984) In: Claussen N, Rühle M, Heuer HA (eds) Advances in ceramics, vol 12, Proceedings of international conference on the science and technology of zirconia II, Stuttgart 1983. American Ceramic Society, Columbus, OHGoogle Scholar
  5. 5.
    Sato T, Ohtaki TS, Shimada M (1985) J Mater Sci 20:1466. doi: 10.1007/BF01026344 CrossRefADSGoogle Scholar
  6. 6.
    Kobayashi K, Kuwajima H, Masaki T (1981) Solid State Ionics 3–4:489CrossRefGoogle Scholar
  7. 7.
    Nakajima K, Kobayashi K, Murata Y (1984) In: Claussen N, Rühle M, Heuer HA (eds) Advances in ceramics, vol 12, Proceedings of international conference on the science and technology of zirconia II, Stuttgart 1983. American Ceramic Society, Columbus, OHGoogle Scholar
  8. 8.
    Sato T, Shimada M (1985) J Am Ceram Soc 68:356CrossRefGoogle Scholar
  9. 9.
    Chevalier J, Cales B, Drouin JM (1999) J Am Ceram Soc 82:2150CrossRefGoogle Scholar
  10. 10.
    Pyyapilly PP, Butt DP (2007) J Nucl Mater 360:92CrossRefADSGoogle Scholar
  11. 11.
    Kim D, Jung H-J, Cho D-H (1995) Solid State Ionics 80:67CrossRefGoogle Scholar
  12. 12.
    Lange FF (1986) J Am Ceram Soc 69:240CrossRefGoogle Scholar
  13. 13.
    Guo X (1999) J Phys Chem Solids 60:539CrossRefADSGoogle Scholar
  14. 14.
    Yoshimura M, Noma T, Kawabata K, Somiya S (1987) J Mater Sci Lett 6:465CrossRefGoogle Scholar
  15. 15.
    Guo X (2004) Chem Mater 16:3988CrossRefGoogle Scholar
  16. 16.
    Guo X (2000) Phys Status Solidi (a) 177:191CrossRefADSGoogle Scholar
  17. 17.
    Guo X, He J (2003) Acta Mater 51:5123CrossRefGoogle Scholar
  18. 18.
    Annamalai VE, Gokularathnam CV, Krishnamurthy R (1992) J Mater Sci Lett 11:824CrossRefGoogle Scholar
  19. 19.
    Modin H, Modin S (1973) Chap. 5 in Metallurgical Microscopy. Butterworth, LondonGoogle Scholar
  20. 20.
    Anstis R, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533CrossRefGoogle Scholar
  21. 21.
    Miller RA, Smialek JL, Garlick RG (1981) In: Heuer AH, Hobbs LW (eds) Advances in ceramics, vol 3, Proceedings of 1st international conference on the science and technology of zirconia, Cleveland, OH, 1980. American Ceramic Society, Columbus, OHGoogle Scholar
  22. 22.
    Lanteri V, Heuer HA, Mitchell TE (1984) In: Claussen N, Rühle M, Heuer HA (eds) Advances in ceramics, vol 12, Proceedings of international conference on the science and technology of zirconia II, Stuttgart 1983. American Ceramic Society, Columbus, OHGoogle Scholar
  23. 23.
    Tsubakino H, Fujiwara T, Satani K, Ioku S (1997) J Mater Sci Lett 16:1472CrossRefGoogle Scholar
  24. 24.
    Gremillard L, Epicier T, Chevalier J, Fantozzi G (2005) J Eur Ceram Soc 25:875CrossRefGoogle Scholar
  25. 25.
    Matsui K, Yoshida H, Ikuhara Y (2008) Acta Mater 56:1315CrossRefGoogle Scholar
  26. 26.
    Tekeli S (2006) Mater Des 27:230Google Scholar
  27. 27.
    Porter L, Heuer AH (1979) J Am Ceram Soc 62:298CrossRefGoogle Scholar
  28. 28.
    Montross CS (1992) J Am Ceram Soc 75:463CrossRefGoogle Scholar
  29. 29.
    Matsui M, Soma T, Oda I (1984) In: Claussen N, Rühle M, Heuer HA (eds) Advances in ceramics, vol 12, Proceedings of international conference on the science and technology of zirconia II, Stuttgart 1983. American Ceramic Society, Columbus, OHGoogle Scholar
  30. 30.
    Kriven WM, Fraser WL, Kennedy SW (1981) In: Heuer AH, Hobbs LW (eds) Advances in ceramics, vol 3, Proceedings of 1st international conference on the science and technology of zirconia, Cleveland, OH, 1980. American Ceramic Society, Columbus, OHGoogle Scholar
  31. 31.
    Rühle M, Heuer HA (1984) In: Claussen N, Rühle M, Heuer HA (eds) Advances in ceramics, vol 12, Proceedings of international conference on the science and technology of zirconia II, Stuttgart 1983. American Ceramic Society, Columbus, OHGoogle Scholar
  32. 32.
    Green DR (1981) J Am Ceram Soc 64:138CrossRefGoogle Scholar
  33. 33.
    Dériano S, Jarry A, Rouxel T, Sangleboeuf J-C, Hampshire S (2004) J Non-Cryst Solids 344:44CrossRefADSGoogle Scholar
  34. 34.
    Sakaguchi S, Sawaki Y, Abe Y, Kawasaki T (1982) J Mater Sci 17:2878. doi: 10.1007/BF00644665 CrossRefADSGoogle Scholar
  35. 35.
    Tada H, Paris P, Irwin G (1973) The stress analysis of cracks handbook. DEL Research Corporation, St. LouisGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • W. Vandermeulen
    • 1
  • R.-W. Bosch
    • 1
  • A. Leenaers
    • 1
  • W. Van Renterghem
    • 1
  • F. Snijkers
    • 2
  1. 1.Belgian Nuclear Research CenterMolBelgium
  2. 2.Flemish Institute for Technological ResearchMolBelgium

Personalised recommendations