Advertisement

Journal of Materials Science

, Volume 45, Issue 23, pp 6353–6364 | Cite as

Nanomechanical characterization of dispersion and its effects in nano-enhanced polymers and polymer composites

  • Alan L. Gershon
  • Daniel P. Cole
  • Arun K. Kota
  • Hugh A. Bruck
IMEC 2009

Abstract

In this paper, a new approach for characterizing dispersion in nano-enhanced polymers and polymer composites using nanomechanical characterization is developed. Dispersion of Carbon nanofibers (CNFs) as a model nanoscale ingredient is characterized in two model polymer systems: (a) a thermoplastic polymer processed using a Twin Screw Extruder, and (b) a thermoset epoxy processed using sonication during solvent processing. For the first time, the modulus of agglomerated nanofibers was isolated from the polymer matrix enhanced with dispersed nanofibers by using nanomechanical characterization. Thus, it was possible to use these nanomechanical properties in a microstructural model using a Rule-of-Mixtures (ROM) formulation to determine the fraction of dispersed nanofibers, which yielded a dispersion limit of 3 vol% CNFs in the nano-enhanced thermoplastic polymer and 3.5 vol% CNFs in the nano-enhanced thermoset epoxy. It was also possible to predict the modulus measured using microtensile testing, and to determine an effective modulus of 30 GPa for the CNFs, which was attributed to a spring-like effect from kinking along the nanofibers. Applying this characterization to control of dispersion through sonication in the nano-enhanced thermoset epoxy, it was possible to determine the degree of dispersion with sonication time which was described using an Avrami equation. Finally, a carbon-fiber mat was used to create a model nano-enhanced polymer composite whose properties were found to be insensitive to sonication time due to filtering effects from the carbon-fiber mat and varied with CNF concentration in a manner where the CNF modulus could be extrapolated to 30 GPa, consistent with the nano-enhanced polymers.

Keywords

Sonication Time Twin Screw Extruder Avrami Equation Nanomechanical Property Dispersion Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by ONR award number N000140910640.

References

  1. 1.
    Bervas M (2005) PhD Dissertation, Rutgers UniversityGoogle Scholar
  2. 2.
    Kubacki RM (2006) In: Proceedings of the 56th electronic components and technology conference, p 161Google Scholar
  3. 3.
    Zhong D, Kim KH, Park IW, Dennin T, Mishra B, Levashov E, Moore JJ (2004) In: Nanostructured thin films and nanodispersion strengthened coatings, vol 155. Kluwer Academic Publishers, Netherlands, p 91Google Scholar
  4. 4.
    Veedu VP, Cao C, Li X, Ma K, Soldano C, Swastik K, Ajayan PM, Ghasemi-Nejhad MN (2006) Nat Mater 5:452CrossRefADSGoogle Scholar
  5. 5.
    Balazs AC, Emrick T, Russell TP (2006) Science 314:1107CrossRefADSPubMedGoogle Scholar
  6. 6.
    Allaoui A, Bai S, Cheng HM, Bai JB (2002) Compos Sci Technol 62:1993CrossRefGoogle Scholar
  7. 7.
    Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K (2004) Compos Sci Technol 64:2363CrossRefGoogle Scholar
  8. 8.
    Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K (2005) Compos Sci Technol 65:2300CrossRefGoogle Scholar
  9. 9.
    Seyhan AT, Gojny FH, Tanoglu M, Schulte K (2007) Eur Polym J 43:374CrossRefGoogle Scholar
  10. 10.
    Zhou Y, Pervin F, Lewis L, Jeelani S (2007) Mater Sci Eng A 452–453:657Google Scholar
  11. 11.
    Zhou Y, Pervin F, Lewis L, Jeelani S (2008) Mater Sci Eng A 475:157CrossRefGoogle Scholar
  12. 12.
    Kepple KL, Sanborn GP, Lacasse PA, Gruenberg KM, Ready WJ (2008) Carbon 46:2026CrossRefGoogle Scholar
  13. 13.
    Ajayan PM, Schadler LS, Braun PV (2203) Nanocomposite science and technology. Wiley-VCH, WeinheimGoogle Scholar
  14. 14.
    Esawi AMK, Farag MM (2007) Mater Des 28:2394Google Scholar
  15. 15.
    Zhou RJ, Burkhart T (2010) J Mater Sci 45:3016. doi: 10.1007/s10853-010-4304-z CrossRefGoogle Scholar
  16. 16.
    Ciecierska E, Boczkowska A, Kurzydlowski KJ (2010) J Mater Sci 45:2305. doi: 10.1007/s10853-009-4192-2 CrossRefGoogle Scholar
  17. 17.
    Armentano I, Del Gaudio C, Bianco A, Dottori M, Nanni F, Fortunati E, Kenny JM (2009) J Mater Sci 44:4789. doi: 10.1007/s10853-009-3721-3 CrossRefADSGoogle Scholar
  18. 18.
    Sumfleth J, Adroher XC, Schulte K (2009) J Mater Sci 44:3241. doi: 10.1007/s10853-009-3434-7 CrossRefADSGoogle Scholar
  19. 19.
    Kota AK, Cipriano BH, Gershon AL, Duesterberg M, Powell D, Raghavan SR, Bruck HA (2007) Macromolecules 40:7400CrossRefADSGoogle Scholar
  20. 20.
    Kota AK, Cipriano BH, Duesterberg M, Powell D, Raghavan SR, Bruck HA (2007) Nanotechnology. doi: 10.1088/0957-4484/18/50/50575
  21. 21.
    Kota AK, Murphy L, Strohmer T, Bigio DI, Bruck HA, Powell D (2008) AICHE J 54:1895CrossRefGoogle Scholar
  22. 22.
    Cipriano BH, Kota AK, Gershon AL, Laskowski CJ, Kashiwagi T, Bruck HA, Raghavan SR (2008) Polymer 49:4846CrossRefGoogle Scholar
  23. 23.
    Gershon AL, Kota AK, Bruck HA (2009) J Compos Mater 43:2587CrossRefGoogle Scholar
  24. 24.
    Ozkan T, Naraghi M, Chasiotis I (2010) Carbon 48:239CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alan L. Gershon
    • 1
  • Daniel P. Cole
    • 1
  • Arun K. Kota
    • 1
  • Hugh A. Bruck
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations