Skip to main content
Log in

Study of fracture evolution in copper sheets by in situ tensile test and EBSD analysis

  • IMEC 2009
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microstructural changes during plastic deformation and fracture evolution play an important role in the understanding of fracture mechanisms. However, most publications have focused on the initial stages of deformation where the latter is uniform. The current study was focused on the last stages of fracture, the necking, and crack propagation. Tensile specimens were examined by in situ scanning electron microscope equipped with a tensile module and electron backscatter diffraction. It was demonstrated that the fracture evolution consists of scanty diffuse necking followed by pronounced localized necking, in which the deformation band spread through the width of the specimen in two combined mechanisms—shearing and dimpling. The microstructural changes inside the deformation band adjacent to crack edge were compared to those in the uniform deformation zone. In the deformed areas, the grains became elongated and preferentially orientated in the loading direction. The relative frequency of twin boundaries at 60° was reduced in the deformed areas compared to non-deformed areas, while the misorientations at low angles of 3°–15°, which imply on a dislocation pileups subgrained structure, were increased to greater extent at the crack edge. Inside the deformation band, the amount of deformation was increased compared to the uniformly deformed region with grain fragments as a result of the complexity of stresses, although similar deformation mechanisms were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Korhonen AS, Manninen T (2008) Mater Sci Eng A 488:157

    Article  Google Scholar 

  2. Considère A (1885) Ann Ponts Chaussées 9:574

    Google Scholar 

  3. Marciniak Z, Kuczynski K (1967) Int J Mech Sci 9:609

    Article  Google Scholar 

  4. Dieter GE (1988) Mechanical metallurgy. McGraw-Hill Book Co, London

    Google Scholar 

  5. Hill R (1952) J Mech Phys Solids 1:19

    Article  MathSciNet  ADS  Google Scholar 

  6. Wang YM, Wang K, Pan D, Lu K, Hemker KJ, Ma E (2003) Scr Mater 48:1581

    Article  CAS  Google Scholar 

  7. Huang H, Yu DW, Verdier M, Spaepen F (2003) Int J Fract 119/120:359

    Article  CAS  Google Scholar 

  8. Kumar KS, Van Swygenhoven H, Suresh S (2003) Acta Mater 51:5743

    Article  CAS  Google Scholar 

  9. Volinsky AA, Gerberich WW (2003) Microelectron Eng 69:519

    Article  CAS  Google Scholar 

  10. Hansen N (2004) Scr Mater 51:801

    Article  CAS  Google Scholar 

  11. Connolley T, Mchugh PE, Bruzzi M (2005) Fatigue Fract Eng Mater Struct 28:1119

    Article  CAS  Google Scholar 

  12. Zhou ZM, Zhou Y, Yang CS, Chen JA, Ding W, Ding GF (2006) Sens Actuator A 127:392

    Article  Google Scholar 

  13. Kiener D, Grosinger W, Dehm G, Pippan R (2008) Acta Mater 56:580

    Article  CAS  Google Scholar 

  14. Dehm G (2009) Prog Mater Sci 54:664

    Article  CAS  Google Scholar 

  15. Brown JA, Ghoniem NM (2009) Acta Mater 57:4454

    Article  CAS  Google Scholar 

  16. Flinn JE, Field DP, Korth GE, Lillo TM, Macheret J (2001) Acta Mater 49:2065

    Article  CAS  Google Scholar 

  17. Scheriau S, Pippan R (2008) Mater Sci Eng A 493:48

    Article  Google Scholar 

  18. Simons G, Weippert Ch, Dual J, Villain J (2006) Mater Sci Eng A 416:290

    Article  Google Scholar 

  19. Kamaya M, Quinta Da Fonseca J, Li LM, Preuss M (2007) Appl Mech Mater 7–8:173

    Article  Google Scholar 

  20. Hong CS, Tao NR, Lu K, Huang X (2009) Scr Mater 61:289

    Article  CAS  Google Scholar 

  21. Borbély A, Szabó PJ, Groma I (2005) Mater Sci Eng A 400–401:132

    Google Scholar 

  22. Askeland DR (1994) The science and engineering of materials, 3rd edn. PWS Publishing Company, Boston

    Google Scholar 

  23. El Wahabi M, Gavard L, Cabrera JM, Prado JM, Montheillet F (2005) Mater Sci Eng A 393:83

    Article  Google Scholar 

  24. Lefevre-Schlick F, Brechet Y, Zurob HS, Purdy G, Embury D (2009) Mater Sci Eng A 502:70

    Article  Google Scholar 

  25. Wu X, Pan X, Mabon JC, Li M, Stubbins JF (2007) J Nucl Mater 371:90

    Article  CAS  ADS  Google Scholar 

  26. Schmid E (1931) Z Electrochem 37:447

    CAS  Google Scholar 

  27. Field DP, True BW, Lillo TM, Flinn JE (2004) Mater Sci Eng A372:173

    CAS  Google Scholar 

  28. Armstrong RW, Codd I, Douthwaite RM, Petch NJ (1962) Philos Mag 7:45

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank O. Sabag, S. Levi, G. Agronov, M. Shohat, I. Maidani, M. Chunnin, and I. Benishti for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Eliaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ifergane, S., Barkay, Z., Beeri, O. et al. Study of fracture evolution in copper sheets by in situ tensile test and EBSD analysis. J Mater Sci 45, 6345–6352 (2010). https://doi.org/10.1007/s10853-010-4596-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4596-z

Keywords

Navigation