Journal of Materials Science

, Volume 45, Issue 16, pp 4501–4506 | Cite as

Thermal fatigue testing of CuCrZr alloy for high temperature tooling applications

  • Yucel Birol


CuCrZr alloy offers good mechanical and thermal properties and was investigated in the present work for its potential as tooling material in thixoforming of steels. Samples of CuCrZr alloy were cycled thermally between 450 and 750 °C, every 60 s. The thermal conductivity of the CuCrZr alloy, nearly an order of magnitude higher with respect to that of the conventional hot work tool steel, proved to be very beneficial in terms of thermal stresses generated at the surface upon thermal cycling. The maximum compressive and tensile stresses produced at the front face of the CuCrZr alloy were estimated to be approximately 30 and 10 MPa, respectively, much smaller than those endured by the conventional hot work tool steel. The very favourable thermal stress state in the CuCrZr alloy die was largely negated, however, due to its inferior resistance to high temperature oxidation.


Oxide Scale Thermal Fatigue Front Face Thermal Expansion Behaviour Thermal Fatigue Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



F. Alageyik and O. Cakır are thanked for their help in the experiments. This work was funded by TUBITAK.


  1. 1.
    Bobzin K, Lugscheider E, Maes M, Immich P (2006) Solid State Phenom 116–117:704CrossRefGoogle Scholar
  2. 2.
    Flemings MC (2000) In: Chiarmetta GL, Rosso M (eds) Proceedings of 6th international conference on semi-solid processing of alloys and composites, Turin, p 11Google Scholar
  3. 3.
    Kopp R, Kallweit J, Moller T, Seidl I (2002) J Mater Process Technol 130–131:562CrossRefGoogle Scholar
  4. 4.
    Lugscheider E, Bobzin K, Barimani C, Barwulf St, Hornig Th (2000) Adv Eng Mater 2:33CrossRefGoogle Scholar
  5. 5.
    Birol Y (2009) Steel Res Int 80:165Google Scholar
  6. 6.
    Birol Y (2009) Steel Res Int 80:588Google Scholar
  7. 7.
    Muenstermann S, Uibel K, Tonnesen T, Telle R (2006) Solid State Phenom 116–117:696CrossRefGoogle Scholar
  8. 8.
    Omar MZ, Palmiere EJ, Howe AA, Atkinson HV, Kapranos P (2005) Mater Sci Eng 395:53CrossRefGoogle Scholar
  9. 9.
    Lugscheider E, Hornig Th, Neuschutz D, Kyrylov O, Prange (2000). In: Chiarmetta GL, Rosso M (eds) Proceedings of 6th international conference on semi-solid processing of alloys and composites, Turin, p 587Google Scholar
  10. 10.
    Telle R, Muenstermann S, Beyer C (2006) Solid State Phenom 116–117:690CrossRefGoogle Scholar
  11. 11.
    Rassili A, Adam L, Legros W, Robelet M, Fischer D, Cucatto A (2004) In: Apelian D, Alexandrou A, Georgiou G, Jorstad J, Makhlouf M (eds) Proceedings of 8th international conference on semi-solid processing of alloys and composites (S2P), Limassol, Cyprus, 21–23 September 2004Google Scholar
  12. 12.
    Kapranos P, Kirkwood DH, Sellars CM (1996) In: Kirkwood H, Kapranos P (eds) Proceedings of the fourth international conference on semi-solid processing of alloys and composites, The University of Sheffield, Sheffield, UK, p 306Google Scholar
  13. 13.
    Kopp R, Lugscheider E, Hornig T, Kallweit J, Maes M, Seidl I (2002) In: Proceedings of the fifth international ESAFORM conference on material forming, Akapit, Krakow, Poland, p 659Google Scholar
  14. 14.
    Kapranos P, Kirkwood DH, Sellars CM (1993) J Eng Manuf B 207:1CrossRefGoogle Scholar
  15. 15.
    Peters D, Brush EF, Cowie JG, Midson SP (2002) In: Die casting toward the future. North American Die Casting Association, Illinois, T02-065Google Scholar
  16. 16.
    Riley FL (2000) J Am Ceram Soc 83:245CrossRefGoogle Scholar
  17. 17.
    Birol Y (2010) Ironmak Steelmak 37:41–46CrossRefGoogle Scholar
  18. 18.
    Birol Y (2009) Ironmak Steelmak 36:555CrossRefGoogle Scholar
  19. 19.
    Birol Y (2008) Solid State Phenom 141–143:289CrossRefGoogle Scholar
  20. 20.
    Birol Y (2009) Ironmak Steelmak 36:397–400CrossRefGoogle Scholar
  21. 21.
    Birol Y (2009) Int J Mater Form. doi: 10.1007/s12289-009-0418-8
  22. 22.
    Birol Y (2009) Mater Sci Eng. doi: 10.1016/j.msea.2009.11.021
  23. 23.
    Birol Y (submitted) Tribol IntGoogle Scholar
  24. 24.
    Schwam D, Wallace JF, Bircenau S (2002) Die materials for critical applications and increased production rates, DE-FC07-98ID13693Google Scholar
  25. 25.
    Batra IS, Dey GK, Kulkarni UD, Banerjee S (2001) J Nucl Mater 299:91CrossRefADSGoogle Scholar
  26. 26.
    Luconi U, Marco MD, Federici A, Grattarola M, Gualco G, Larrea JM, Merola M, Ozzano C, Pasquale G (2005) Fusion Eng Des 75–79:271CrossRefGoogle Scholar
  27. 27.
    Dieter G (1986) Mechanical metallurgy. McGraw-Hill, New YorkGoogle Scholar
  28. 28.
    Leedy KD, Stubbins JF, Singh BN, Garner FA (1996) J Nucl Mater 233–237:547CrossRefGoogle Scholar
  29. 29.
    Pickering FB (1987) In: Krauss G, Nordberg H (eds) Tool materials for mold and dies. Colorado School of Mines Press, Golden, Colorado, p 3Google Scholar
  30. 30.
    Zheng JH, Bogaerts WF, Lorenzetto P (2002) Fusion Eng Des 61–62:649CrossRefGoogle Scholar
  31. 31.
    Zhu Y, Mimura K, Isshiki M (2004) Oxid Met 62:207CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Materials InstituteMarmara Research Center, TUBITAKGebzeTurkey

Personalised recommendations