Journal of Materials Science

, Volume 45, Issue 16, pp 4422–4430 | Cite as

Organoclay/thermotropic liquid crystalline polymer nanocomposites. Part II: shear-induced phase separation

  • Youhong Tang
  • Ping Gao
  • Lin Ye
  • Chengbi Zhao
  • Wei Lin


Experimental studies on a kind of thermotropic liquid crystalline polymer (TLCP) containing 30% p-hydroxybenzoic acid (HBA), 35% hydroquinone (HQ), and 35% sebacic acid (SA) in mole fractions and its nanocomposite (TC3) containing 3.0 wt% organoclay are reported. The structures and dynamics of shear-induced phase separation and the effects of these structures on the macroscopic rheological properties of the nanocomposite are characterized under different shear conditions at 190 °C, which is in the nematic transition region of TLCP. The molecular level interactions between organoclay and TLCP molecules form a percolated-network structure in the composite, causing the composite to display complex viscosity with more than two orders of magnitude greater than that of TLCP in linear regions. However, such a network structure is easily destroyed in steady shear deformation, and it does not recover. Polarized optical microscopy (POM) equipped with a Cambridge shear system and transmission electron microscopy (TEM) confirm a shear-induced phase separation phenomenon during steady shear deformation. Two phases are observed in POM and TEM, with TLCP-rich and organoclay-rich phases. Steady shear at a small shear rate is effective to separate the two phases for characterizations.


Shear Rate Polarize Optical Microscopy Sebacic Acid Thermotropic Liquid Crystalline Polymer Liquid Crystalline Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project was funded by a grant from the Research Grant Council of Hong Kong, grant number HKUST6256/02.

Supplementary material

10853_2010_4524_MOESM1_ESM.doc (224 kb)
Supplementary material 1 (DOC 224 kb)


  1. 1.
    Barnes HA, Hutton JF, Walters K (1989) Introduction to rheology. Elsevier, AmsterdamMATHGoogle Scholar
  2. 2.
    Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Adams MJ, Mashelkar RA, Pearson AJ, Rennie AR (eds) (1998) Dynamic of complex fluids. Royal Society/Imperial College Press, LondonGoogle Scholar
  4. 4.
    Fuller GG (1995) Optical rheometry of complex fluid. Oxford University Press, New YorkGoogle Scholar
  5. 5.
    Rennie AR, Clarke SM (1996) Curr Opin Colloid Interface Sci 1:34CrossRefGoogle Scholar
  6. 6.
    Ball RC, Merrose JR (1995) Adv Colloid Interface Sci 59:19CrossRefGoogle Scholar
  7. 7.
    Krishnamoorti R, Silva AS, Modi MA, Hammouda B (2000) Macromolecules 33:3803CrossRefADSGoogle Scholar
  8. 8.
    Escalante JI, Hoffmann H (2000) J Phys Condens Matter 12:A483CrossRefADSGoogle Scholar
  9. 9.
    Lu CYD, Olmsted PD, Ball RC (2000) Phys Rev Lett 84:642CrossRefPubMedADSGoogle Scholar
  10. 10.
    Brown ABD, Rennie AR (2001) Chem Eng Sci 56:2999CrossRefGoogle Scholar
  11. 11.
    Ramsay JDF, Lindner P (1993) J Chem Soc Faraday Trans 89:4207CrossRefGoogle Scholar
  12. 12.
    Pignon F, Magnin A, Piau JM (1997) Phys Rev Lett 79:4689CrossRefADSGoogle Scholar
  13. 13.
    Brown ABD, Clarke SM, Convert P, Rennie AR (2000) J Rheol 44:221CrossRefADSGoogle Scholar
  14. 14.
    Hongladarom K, Burghardt W (1993) Macromolecules 26:785CrossRefADSGoogle Scholar
  15. 15.
    Zhang GL, Jiang CL, Su CY, Zhang HZ (2003) J Appl Polym Sci 89:3155CrossRefGoogle Scholar
  16. 16.
    Chang JH, Ju CH, Kim SH (2006) J Polym Sci B 44:387CrossRefGoogle Scholar
  17. 17.
    Huang WY, Han CD (2006) Macromolecules 39:257CrossRefADSGoogle Scholar
  18. 18.
    Huang WY, Han CD (2006) Polymer 47:4400CrossRefGoogle Scholar
  19. 19.
    Gao P, Lu XH, Chai CK (1996) Polym Eng Sci 36:2771CrossRefGoogle Scholar
  20. 20.
    Tang YH, Gao P, Ye L, Chao CB, e-Polymer (submitted for publication)Google Scholar
  21. 21.
    Chan CK, Whitehouse C, Gao P (1999) Polym Eng Sci 39:1353CrossRefGoogle Scholar
  22. 22.
    Chan CK, Gao P (2005) Polymer 46:10890CrossRefGoogle Scholar
  23. 23.
    Chesters AK (1991) Chem Eng Res Des 69:259Google Scholar
  24. 24.
    Baldan A (2002) J Mater Sci 37:2171. doi: 10.1023/A:1015388912729 CrossRefGoogle Scholar
  25. 25.
    Kabalnov A (2001) J Disper Sci Technol 22:1CrossRefGoogle Scholar
  26. 26.
    Magda JJ, Lee CS, Muller SJ, Larson RG (1993) Macromolecules 26:1696CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Youhong Tang
    • 1
    • 3
  • Ping Gao
    • 1
  • Lin Ye
    • 2
  • Chengbi Zhao
    • 3
  • Wei Lin
    • 3
  1. 1.Department of Chemical and Biomolecular EngineeringThe Hong Kong University of Science and TechnologyKowloonHong Kong, China
  2. 2.Centre for Advanced Materials Technology, School of Aerospace, Mechanical and Mechatronic EngineeringThe University of SydneySydneyAustralia
  3. 3.Centre for Advanced Marine Materials, School of Civil Engineering and TransportationSouth China University of TechnologyGuangzhouChina

Personalised recommendations