Journal of Materials Science

, Volume 45, Issue 23, pp 6283–6312 | Cite as

Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine

  • S. Ramakrishna
  • R. Jose
  • P. S. Archana
  • A. S. Nair
  • R. Balamurugan
  • J. Venugopal
  • W. E. Teo
IMEC 2009


Nanostructured materials with high aspect ratio and one-dimensional (ID) morphology are nature’s choices when high degree of functional performances and flexible properties are concerned. Two examples are extracellular matrices in tissues of living organism, and light harvesting rods of the retina and chlorophyll. Electrospinning (E-spinning) is a simple processing technique that allows fabrication of high aspect ratio nanofibers (NFs) in a commercial scale. Electrospun nanofibers (E-spun NFs) combine a number of physical properties such as guided electron transport, strain-induced electronic properties, high mechanical strength, high degree of flexibility, large specific surface area, high electron and thermal diffusivity, and tailorable pore distribution. Our laboratory has been involved in fabrication of E-spun polymeric, inorganic, and polymer-nanocomposite fibers in random, aligned, cross-aligned, sheaths, tubes, yarns, core/shell, and trilayer morphologies. This article focuses on application of the E-spun fibers in the areas of clean energy, water treatment, and regenerative medicine in the authors’ laboratory. In addition, the article briefly reviews the progress made in these areas using E-spun NFs.


TiO2 High Resolution Transmission Electron Microscope TiO2 Film Interfacial Polymerization Electron Lifetime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors acknowledge fellow colleagues at the Healthcare and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, National University of Singapore. Photovoltaic and lithium ion battery researches are supported by the National Research Foundation, Singapore through the clean energy program office (NRF-CRP4-2008-03) and Competitive Research Project (NRF2007EWT-CERP01-0531). The clean water program is supported by the Environment and Water Industry (EWI) Development Council, Government of Singapore through the funded project “Development of low pressure, high flux UF and NF membranes based on electrospun nanofibers for water treatment (EDB (EWI)-0601-IRIS-062-04)”. The clean regenerative medicine program is supported by NRF––Technion project (R-398-001-063-281).


  1. 1.
    Reneker DH, Yarin AL (2008) Polymer 49:2387CrossRefGoogle Scholar
  2. 2.
    Greiner A, Wendorff JH (2007) Angew Chem 46:5670CrossRefGoogle Scholar
  3. 3.
    Teo WE, Ramakrishna S (2006) Nanotechnol 17:R89ADSCrossRefGoogle Scholar
  4. 4.
    Teo WE, Ramakrishna S (2009) Compos Sci Technol 69:1804CrossRefGoogle Scholar
  5. 5.
    Reneker DH, Chun I (1996) Nanotechnology 7:216ADSCrossRefGoogle Scholar
  6. 6.
    Ramasheshan R, Sundarrajan S, Jose R, Ramakrishna S (2007) J Appl Phys 102:111101ADSCrossRefGoogle Scholar
  7. 7.
    Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino JC (2006) J Am Ceram Soc 89:395CrossRefGoogle Scholar
  8. 8.
    Cooley JF (1902) Apparatus for electrically dispersing fluids. US Patent Specification 692631Google Scholar
  9. 9.
    Li D, Xia YN (2004) Adv Mater 16:1151CrossRefGoogle Scholar
  10. 10.
    Zhou ZH, Gao XS, Wang J, Fujihara K, Ramakrishna S, Natarajan V (2007) Appl Phys Lett 90:052902ADSCrossRefGoogle Scholar
  11. 11.
    Lee BH, Song MY, Jang S-Y, Jo SM, Kwak S-Y, Kim DK (2009) J Phys Chem C 113:21435Google Scholar
  12. 12.
    Jose R, Kumar A, Thavasi V, Fujihara K, Uchida S, Ramakrishna S (2008) Appl Phys Lett 93:023125ADSCrossRefGoogle Scholar
  13. 13.
    Ramakrishna S, Ng DJT (2009) Changing face of Innovation: is it Shifting to Asia. World Scientific Publishers, SingaporeGoogle Scholar
  14. 14.
    Lewis NS, Crabtree GW, Nozik AJ et al (Eds) (2005) Basic energy sciences workshop on solar energy utilization. Office of Science, U.S. Department of Energy, Washington, DCGoogle Scholar
  15. 15.
    Kim MG, Cho J (2009) Adv Funct Mater 19:1Google Scholar
  16. 16.
    Simon P, Gogotsi Y (2008) Nat Mater 7:845ADSPubMedCrossRefGoogle Scholar
  17. 17.
    Gregg BA (2003) J Phys Chem B 107:4688CrossRefGoogle Scholar
  18. 18.
    Grätzel M (2003) Nature 414:338CrossRefGoogle Scholar
  19. 19.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789ADSCrossRefGoogle Scholar
  20. 20.
    Vogel R, Pohl K, Weller H (1990) Chem Phys Lett 174:241ADSCrossRefGoogle Scholar
  21. 21.
    Ito S, Murakami TN, Comte P, Liska P, Gratzel C, Nazeeruddin MK, Gratzel M (2008) Thin Solid Films 516:4613ADSCrossRefGoogle Scholar
  22. 22.
    Jose R, Thavasi V, Ramakrishna S (2009) J Am Ceram Soc 92:289CrossRefGoogle Scholar
  23. 23.
    Thavasi V, Renugopalakrishnan V, Jose R, Ramakrishna S (2009) Mater Sci Eng R Rep 63:81CrossRefGoogle Scholar
  24. 24.
    Green MA, Emery K, Hishikawa Y, Warta W (2009) Progr Photovolt 17:320CrossRefGoogle Scholar
  25. 25.
    Morooka M, Noda K (2008) In: 88th spring meeting of the chemical society of Japan, TokyoGoogle Scholar
  26. 26.
    Han L, Fukui A, Fuke N, Koide N, Yamanaka R (2006) In: 4th world conference on photovoltaic energy conversion (WCEP-4), HawaiGoogle Scholar
  27. 27.
    McConnell RD (2002) Renew Sustain Energy Rev 6:271CrossRefGoogle Scholar
  28. 28.
    Bisquert J (2008) Phys Chem Chem Phys 10:49PubMedCrossRefGoogle Scholar
  29. 29.
    Bisquert J (2008) Phys Chem Chem Phys 10:3175PubMedCrossRefGoogle Scholar
  30. 30.
    Bisquert J, Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, Barea EM, Palomares E (2008) Inorg Chim Acta 361:684CrossRefGoogle Scholar
  31. 31.
    Bisquert J, Garcia-Belmonte G, Bueno P, Longo E, Bulhões LOS (1998) J Electroanal Chem 452:229CrossRefGoogle Scholar
  32. 32.
    Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Ferriols NS, Bogdanoff P, Pereira EC (2000) J Phys Chem B 104:2287CrossRefGoogle Scholar
  33. 33.
    Bisquert J, Gratzel M, Wang Q, Fabregat-Santiago F (2006) J Phys Chem B 110:11284PubMedCrossRefGoogle Scholar
  34. 34.
    Bisquert J, Zaban A, Greenshtein M, Mora-Sero I (2004) J Am Chem Soc 126:13550PubMedCrossRefGoogle Scholar
  35. 35.
    Jose R, Zhanpeisov NU, Fukumura H, Baba Y, Ishikawa M (2006) J Am Chem Soc 128:629PubMedCrossRefGoogle Scholar
  36. 36.
    Fisher AC, Peter LM, Ponomarev EA, Walker AB, Wijayantha KGU (2000) J Phys Chem B 104:949CrossRefGoogle Scholar
  37. 37.
    Adachi M, Jiu J, Isoda S (2007) Curr Nanosci 3:285ADSCrossRefGoogle Scholar
  38. 38.
    Enache-Pommer E, Boercker JE, Aydil ES (2007) Appl Phys Lett 91:3CrossRefGoogle Scholar
  39. 39.
    Paulose M, Shankar K, Varghese OK, Mor GK, Grimes CA (2006) J Phys D Appl Phys 39:2498ADSCrossRefGoogle Scholar
  40. 40.
    Varghese OK, Paulose M, Grimes CA (2009) Nat Nanotechnol 4:592ADSPubMedCrossRefGoogle Scholar
  41. 41.
    Mukherjee K, Teng TH, Jose R, Ramakrishna S (2009) Appl Phys Lett 95:012101ADSCrossRefGoogle Scholar
  42. 42.
    Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB (2008) J Am Chem Soc 130:13364PubMedCrossRefGoogle Scholar
  43. 43.
    Li D, Xia Y (2003) Nano Lett 3:555ADSCrossRefGoogle Scholar
  44. 44.
    Wang C, Tong Y, Sun Z, Xin Y, Yan E, Huang Z (2007) Mater Lett 61:5125CrossRefGoogle Scholar
  45. 45.
    Madhugiri S, Sun B, Smirniotis PG, Ferraris JP, Balkus KJ (2004) Micropor Mesopor Mater 69:77CrossRefGoogle Scholar
  46. 46.
    Macías M, Chacko A, Ferraris JP, Balkus Jr KJ (2005) Micropor Mesopor Mater 86:1CrossRefGoogle Scholar
  47. 47.
    Nuansing W, Ninmuang S, Jarernboon W, Maensiri S, Seraphin S (2006) Mater Sci Eng B 131:147CrossRefGoogle Scholar
  48. 48.
    Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S (2007) Chem Mater 19:6536CrossRefGoogle Scholar
  49. 49.
    Rinaldi M, Ruggieri F, Lozzi L, Santucci S (2009) J Vac Sci Technol B 27:1829CrossRefGoogle Scholar
  50. 50.
    Wang Y, Jia WZ, Strout T, Schempf A, Zhang H, Li BK, Cui JH, Lei Y (2009) Electroanalysis 21:1432CrossRefGoogle Scholar
  51. 51.
    Wang Y, Jia WZ, Strout T, Ding Y, Lei Y (2009) Sensors 9:6752CrossRefGoogle Scholar
  52. 52.
    Wal RLV, Berger GM, Kulis MJ, Hunter GW, Xu JC, Evans L (2009) Sensors 9:7866CrossRefGoogle Scholar
  53. 53.
    Qi Q, Feng YL, Zhang T, Zheng XJ, Lu GY (2009) Sens Actuators B Chem 139:611CrossRefGoogle Scholar
  54. 54.
    Reddy MV, Jose R, Teng TH, Chowdari BVR, Ramakrishna S (2010) Electrochim Acta 55:3109CrossRefGoogle Scholar
  55. 55.
    Lu HW, Zeng W, Li YS, Fu ZW (2007) J Power Sour 164:874CrossRefGoogle Scholar
  56. 56.
    Zhang XW, Xu SY, Han GR (2009) Mater Lett 63:1761CrossRefGoogle Scholar
  57. 57.
    Yang Y, Wang HY, Li X, Wang C (2009) Mater Lett 63:331CrossRefGoogle Scholar
  58. 58.
    Im JS, Il Kim M, Lee YS (2008) Mater Lett 62:3652CrossRefGoogle Scholar
  59. 59.
    Lee SH, Sigmund WM (2006) J Nanosci Nanotechnol 6:554PubMedCrossRefGoogle Scholar
  60. 60.
    Jose R, Kumar A, Thavasi V, Ramakrishna S (2008) Nanotechnol 19:424004ADSCrossRefGoogle Scholar
  61. 61.
    Fujihara K, Kumar A, Jose R, Ramakrishna S, Uchida S (2007) Nanotechnol 18:365709CrossRefGoogle Scholar
  62. 62.
    Onozuka K, Ding B, Tsuge Y, Naka T, Yamazaki M, Sugi S, Ohno S, Yoshikawa M, Shiratori S (2006) Nanotechnol 17:1026ADSCrossRefGoogle Scholar
  63. 63.
    Song MY, Ahn YR, Jo SM, Kim DY, Ahn JP (2005) Appl Phys Lett 87:113113ADSCrossRefGoogle Scholar
  64. 64.
    Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2005) Synth Met 153:77CrossRefGoogle Scholar
  65. 65.
    Kokubo H, Ding B, Naka T, Tsuchihira H, Shiratori S (2007) Nanotechnol 18:165604ADSCrossRefGoogle Scholar
  66. 66.
    Chuangchote S, Sagawa T, Yoshikawa S (2008) Appl Phys Lett 93:033310Google Scholar
  67. 67.
    Archana PS, Jose R, Vijila C, Ramakrishna S (2009) J Phys Chem C 113(52)21538–21542 Google Scholar
  68. 68.
    ICDD Powder Diffraction Database. PDF#211272 (Ed) PCPDFWIN, PDF#211272Google Scholar
  69. 69.
    ICDD Powder Diffraction Database. PDF#211276 (Ed) PCPDFWIN, PDF#211276Google Scholar
  70. 70.
    Orendorz ABA, Losch J, Bai LH, Chen ZH, Le YK, Ziegler C, Gnaser H (2006) Surf Sci 600:4347ADSCrossRefGoogle Scholar
  71. 71.
    Banfield HZaJF (2000) J Mater Res 15:437ADSGoogle Scholar
  72. 72.
    Ranade ANMR, Zhang HZ, Banfield JF, Elder SH, Zaben A, Borse PH, Kulkarni SK, Doran GS, Whitfield HJ (2001) Proc Nat Acad Sci 99(Suppl. 2):6476–6481Google Scholar
  73. 73.
    Ding XZ, Liu XH, He YZ (1996) J Mater Sci Lett 15:1789CrossRefGoogle Scholar
  74. 74.
    Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2004) Nanotechnol 15:1861ADSCrossRefGoogle Scholar
  75. 75.
    Rui Z, Jiang CY, Liu X, Liu B, Kumar A, Ramakrishna S (2008) Appl Phys Lett 93:013102Google Scholar
  76. 76.
    Shim HS, Na SI, Nam SH, Ahn HJ, Kim HJ, Kim DY, Kim WB (2008) Appl Phys Lett 92:183107ADSCrossRefGoogle Scholar
  77. 77.
    Wang Q, Ito S, Grätzel M, Fabregat-Santiago F, Mora-Sero I, Bisquert J, Bessho T, Imai H (2006) J Phys Chem B 110:25210PubMedCrossRefGoogle Scholar
  78. 78.
    Zaban A, Greenshtein M, Bisquert J (2003) Chemphyschem 4:859PubMedCrossRefGoogle Scholar
  79. 79.
    Kopidakis N, Benkstein KD, van de Lagemaat J, Frank AJ, Yuan Q, Schiff EA (2006) Phys Rev B 73:045326ADSCrossRefGoogle Scholar
  80. 80.
    Nair AS, Jose R, Shengyuan Y, Ramakrishna S (unpublished results)Google Scholar
  81. 81.
    Drew C, Wang XY, Senecal K, Schreuder-Gibson H, He JN, Kumar J, Samuelson LA (2002) J Macromol Sci A 39:1085CrossRefGoogle Scholar
  82. 82.
    Senecal KJ, Ziegler DP, He JN, Mosurkal R, Schreuder-Gibson H, Samuelson LA (2001) Mater Res Soc Symp Proc 708:BB9.5.1Google Scholar
  83. 83.
    Gratzel M (2001) Nature 414:338ADSPubMedCrossRefGoogle Scholar
  84. 84.
    Armand M, Tarascon JM (2008) Nature 451:652ADSPubMedCrossRefGoogle Scholar
  85. 85.
    Tarascon JM, Armand M (2001) Nature 414:359ADSPubMedCrossRefGoogle Scholar
  86. 86.
    Bruce PG, Scrosati B, Tarascon JM (2008) Angewandte Chemie-Int Ed 47:2930CrossRefGoogle Scholar
  87. 87.
    Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2004) Electrochim Acta 50:69CrossRefGoogle Scholar
  88. 88.
    Choi SS, Lee YS, Joo CW, Lee SG, Park JK, Han KS (2004) Electrochim Acta 50:339CrossRefGoogle Scholar
  89. 89.
    Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2005) J Electr Chem 152:A295CrossRefGoogle Scholar
  90. 90.
    Gu YX, Chen DR, Jiao ML (2005) J Phys Chem B 109:17901PubMedCrossRefGoogle Scholar
  91. 91.
    Shao CL, Yu N, Liu YC, Mu RX (2006) J Phys Chem Solids 67:1423ADSCrossRefGoogle Scholar
  92. 92.
    Zhan SH, Li Y, Yu HB (2008) J Dispers Sci Technol 29:702CrossRefGoogle Scholar
  93. 93.
    Lu HW, Yu L, Zeng W, Li YS, Fu ZW (2008) Electrochem Solid State Lett 11:A140CrossRefGoogle Scholar
  94. 94.
    Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M (2006) Adv Funct Mater 16:2393CrossRefGoogle Scholar
  95. 95.
    Wang L, Yu Y, Chen PC, Chen CH (2008) Scripta Mater 58:405CrossRefGoogle Scholar
  96. 96.
    Lu HW, Li D, Sun K, Li YS, Fu ZW (2009) Solid State Sci 11:982ADSCrossRefGoogle Scholar
  97. 97.
    Fan X, Zou L, Zheng YP, Kang FY, Shen WC (2009) Electrochem Solid State Lett 12:A199CrossRefGoogle Scholar
  98. 98.
    Ban CM, Chernova NA, Whittingham MS (2009) Electrochem Commun 11:522CrossRefGoogle Scholar
  99. 99.
    Fan Q, Whittingham MS (2007) Electrochem Solid State Lett 10:A48CrossRefGoogle Scholar
  100. 100.
    Viet AL, Reddy MV, Jose R, Chowdari BVR, Ramakrishna S (2010) J Phys Chem C 114:664CrossRefGoogle Scholar
  101. 101.
    Le Viet A, Reddy MV, Jose R, Chowdari BVR, Ramakrishna S (unpublished results)Google Scholar
  102. 102.
    Gu YX, Jian FF, Wang X (2008) Thin Solid Films 517:652ADSCrossRefGoogle Scholar
  103. 103.
    Ding YH, Zhang P, Long ZL, Jiang Y, Huang JN, Yan WJ, Liu G (2008) Mater Lett 62:3410CrossRefGoogle Scholar
  104. 104.
    Brennan MB (2001) Chem Eng News 79:32Google Scholar
  105. 105.
    Baker RW, Ruthven DM (1997) Encycl Sep Technol 2:1212Google Scholar
  106. 106.
    Starthmann H, Bungay PM, Lonsdale HK, de Pinho MN (eds) (1983) Kluwer Academic Publishers, Dordrecht; BostonGoogle Scholar
  107. 107.
    Pinnau I, Freeman BD (eds) (2000) Formation and modification of polymeric membranes. American Chemical Society, Washington DCGoogle Scholar
  108. 108.
    Baker RW (2004) Membrane technology and applications, 2nd edn. John Wiley & Sons. Ltd, ChichesterGoogle Scholar
  109. 109.
    Formhals A (1943) US PatentGoogle Scholar
  110. 110.
    Baumgarten PK (1971) J Colloid Interface Sci 36:71CrossRefGoogle Scholar
  111. 111.
    Jaeger R, Schoenherr H, Vansco G (1996) J Macromol 29:7634ADSCrossRefGoogle Scholar
  112. 112.
    Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) J Appl Phys 87:4531ADSCrossRefGoogle Scholar
  113. 113.
    Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223CrossRefGoogle Scholar
  114. 114.
    Hajra MG, Mehta K, Chase GG (2003) Sep Purif Technol 30:79CrossRefGoogle Scholar
  115. 115.
    Gibson PW, Schreuder-Gibson HL, Rivin D (1999) Aiche J 45:190CrossRefGoogle Scholar
  116. 116.
    Schreuder-Gibson H, Gibson P, Senecal K, Sennett M, Walker J, Yeomans W, Ziegler D, Tsai PP (2002) J Adv Mater 34:44Google Scholar
  117. 117.
    Gibson P, Schreuder-Gibson H, Rivin D (2001) Colloid Surf A-Physicochem Eng Aspect 187:469CrossRefGoogle Scholar
  118. 118.
    Kim JS, Reneker DH (1999) Polym Eng Sci 39:849CrossRefGoogle Scholar
  119. 119.
    Bergshoef MM, Vancso GJ (1999) Adv Mater 11:1362CrossRefGoogle Scholar
  120. 120.
    Fong H (2004) Polymer 45:2427CrossRefGoogle Scholar
  121. 121.
    Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Biomacromolecules 3:232PubMedCrossRefGoogle Scholar
  122. 122.
    Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) Biomaterials 24:2077PubMedCrossRefGoogle Scholar
  123. 123.
    Xu CY, Inai R, Kotaki M, Ramakrishna S (2004) Biomaterials 25:877PubMedCrossRefGoogle Scholar
  124. 124.
    Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Biomaterials 25:1289PubMedCrossRefGoogle Scholar
  125. 125.
    Shin M, Ishii O, Sueda T, Vacanti JP (2004) Biomaterials 25:3717PubMedCrossRefGoogle Scholar
  126. 126.
    Kumar S, Dang TD, Arnold FE, Bhattacharyya AR, Min BG, Zhang XF, Vaia RA, Park C, Adams WW, Hauge RH, Smalley RE, Ramesh S, Willis PA (2002) Macromolecules 35:9039ADSCrossRefGoogle Scholar
  127. 127.
    Ma ZW, Kotaki M, Ramakrishna S (2005) J Membr Sci 265:115CrossRefGoogle Scholar
  128. 128.
    Gopal R, Kaur S, Ma ZW, Chan C, Ramakrishna S, Matsuura T (2006) J Membr Sci 281:581CrossRefGoogle Scholar
  129. 129.
    Nunes SP, Peinemann KV (2001) Membrane technology in the chemical industry. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  130. 130.
    Gopal R, Ma Z, Kaur S, Ramakrishna S, Manssori AG, George TF, Zhang G, Assoufid L (Eds) (2006) Surface modification and application of functionalized polymer nanofibers. Springer, New YorkGoogle Scholar
  131. 131.
    Chan CM, Ko TM, Hiraoka H (1996) Surf Sci Rep 24:3CrossRefGoogle Scholar
  132. 132.
    Kaur S, Ma Z, Gopal R, Singh G, Ramakrishna S, Matsuura T (2007) Langmuir 23:13085PubMedCrossRefGoogle Scholar
  133. 133.
    Kaur GSS, Gopal R, Barhate RS, Ng WJ, Matsuura T, Ramakrishna S, Unpublished workGoogle Scholar
  134. 134.
    Dong Y, Yong T, Liao S, Chan CK, Ramakrishna S (2008) J R Soc Interface/R Soc 5:1109CrossRefGoogle Scholar
  135. 135.
    Teo WE, He W, Ramakrishna S (2006) Biotechnol J 1:918PubMedCrossRefGoogle Scholar
  136. 136.
    He W, Yong T, Teo WE, Ma ZW, Ramakrishna S (2005) Tissue Eng 11:1574PubMedCrossRefGoogle Scholar
  137. 137.
    Nur-E-Kamal A, Ahmed I, Kamal J, Schindler M, Meiners S (2005) Biochem Biophys Res Commun 331:428PubMedCrossRefGoogle Scholar
  138. 138.
    Fan X, Zou R, Zhao Z, Yang P, Li Y, Song J (2009) Tissue Cell 41:266PubMedCrossRefGoogle Scholar
  139. 139.
    Prabhakaran MP, Venugopal JR, Ramakrishna S (2009) Biomaterials 30:4996PubMedCrossRefGoogle Scholar
  140. 140.
    Li W-J, Tuli R, Huang X, Laquerriere P, Tuan RS (2005) Biomaterials 26:5158PubMedCrossRefGoogle Scholar
  141. 141.
    Chua K-N, Chai C, Lee P-C, Tang Y-N, Ramakrishna S, Leong KW, Mao H-Q (2006) Biomaterials 27:6043PubMedCrossRefGoogle Scholar
  142. 142.
    Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, Xia Y (2009) Biomaterials 30:354PubMedCrossRefGoogle Scholar
  143. 143.
    Li W, Guo Y, Wang H, Shi D, Liang C, Ye Z, Qing F, Gong J (2008) J Mater Sci Mater Med 19:847PubMedCrossRefGoogle Scholar
  144. 144.
    Corey JM, Lin DY, Mycek KB, Chen Q, Samuel S, Feldman EL, Martin DC (2007) J Biomed Mater Res A 83:636PubMedGoogle Scholar
  145. 145.
    Chew SY, Mi R, Hoke A, Leong KW (2008) Biomaterials 29:653PubMedCrossRefGoogle Scholar
  146. 146.
    Zhong S, Teo WE, Zhu X, Beuerman RW, Ramakrishna S, Yung LYL (2006) J Biomed Mater Res A 79:456PubMedGoogle Scholar
  147. 147.
    Ma Z, He W, Yong T, Ramakrishna S (2005) Tissue Eng 11:1149PubMedCrossRefGoogle Scholar
  148. 148.
    Wnek GE, Carr ME, Simpson DG, Bowlin GL (2003) Nano Lett 3:213ADSCrossRefGoogle Scholar
  149. 149.
    Fang X, Reneker DH (1997) J Macromol Sci B Phys B36:169CrossRefGoogle Scholar
  150. 150.
    Lee SW, Belcher AM (2004) Nano Lett 4:387ADSCrossRefGoogle Scholar
  151. 151.
    Zhong S, Teo W, Zhu X, Beuerman R, Ramakrishna S, Yung L (2007) Mater Sci Eng C 27:262CrossRefGoogle Scholar
  152. 152.
    He W, Ma Z, Yong T, Teo WE, Ramakrishna S (2005) Biomaterials 26:7606PubMedCrossRefGoogle Scholar
  153. 153.
    Venugopal J, Vadgama P, Kumar TSS, Ramakrishna S (2007) Nanotechnol 18:055101ADSCrossRefGoogle Scholar
  154. 154.
    Chen J, Chu B, Hsiao BS (2006) J Biomed Mater Res A 79:307PubMedGoogle Scholar
  155. 155.
    Ngiam M, Liao S, Patil AJ, Cheng Z, Yang F, Gubler MJ, Ramakrishna S, Chan CK (2009) Tissue Eng A 15:535CrossRefGoogle Scholar
  156. 156.
    Mendonca G, Mendonca DBS, Arago FJL, Cooper LF (2008) Biomaterials 29:3822–3835Google Scholar
  157. 157.
    Webster TJ, Ejiofor JU (2004) Biomaterials 25:4731–4739Google Scholar
  158. 158.
    Neves NM, Campos R, Pedro A, Cunha J, Macedo F, Reos RL (2007) Int J Nanomed 2:433Google Scholar
  159. 159.
    Gibson P, Schreuder-Gibson H (2004) INJ 13:34Google Scholar
  160. 160.
    Matsuda T, Ihara M, Inoguchi H, Kown IK, Takamizawa K, Kidoaki S (2005) J Biomed Mater Res 73A:125CrossRefGoogle Scholar
  161. 161.
    Bini TB, Gao S, Tan TC, Wang S, Lim A, Lim BH, Ramakrishna S (2004) Nanotechnol 15:1459ADSCrossRefGoogle Scholar
  162. 162.
    Stitzel JD, Pawlowski J, Wnek GE, Simpson DG, Bowlin GL (2001) J Biomater Appl 16:22PubMedCrossRefGoogle Scholar
  163. 163.
    Thomas V, Zhang X, Catledge SA, Vohra YK (2007) Biomed Mater 2:224ADSPubMedCrossRefGoogle Scholar
  164. 164.
    Teo WE, Kotaki M, Mo XM, Ramakrishna S (2005) Nanotechnol 16:918ADSCrossRefGoogle Scholar
  165. 165.
    Nottelet B, Pektok E, Mandracchia D, Tille JC, Walpoth B, Gurny R, Moller M (2008) J Biomed Mater Res A 89A:865Google Scholar
  166. 166.
    Panseri S, Cunha C, Lowery J, Del Carro U, Taraballi F, Amadio S, Vescovi A, Gelain F (2008) BMC Biotechnol 8:39PubMedCrossRefGoogle Scholar
  167. 167.
    Chew SY, Mi R, Hoke A, Leong KW (2007) Adv Funct Mater 17:1288PubMedCrossRefGoogle Scholar
  168. 168.
    Clements IP, Kim Y-t, English AW, Lu X, Chung A, Bellamkonda RV (2009) Biomaterials 30:3834PubMedCrossRefGoogle Scholar
  169. 169.
    Teo WE, Gopal R, Ramaseshan R, Fujihara K, Ramakrishna S (2007) Polymer 48:3400CrossRefGoogle Scholar
  170. 170.
    Smit E, Buttner U, Sanderson RD (2005) Polym Commun 46:2419Google Scholar
  171. 171.
    Teo WE, Liao S, Chan CK, Ramakrishna S (2008) Curr Nanosci 4:361ADSCrossRefGoogle Scholar
  172. 172.
    Kuraishi K, Iwata H, Nakano S, Kubota S, Tonami H, Toda M, Toma N, Matsushima S, Hamada K, Ogawa S, Taki W (2009) J Biomed Mater Res B Appl Biomater 88:230PubMedGoogle Scholar
  173. 173.
    Choi D, Hwang KC, Lee KY, Kim YH (2009) J Control Release 140:194PubMedCrossRefGoogle Scholar
  174. 174.
    Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Cell 114:763PubMedCrossRefGoogle Scholar
  175. 175.
    Wu J, Zeng F, Weisel DR, Li R-K (2009) Adv BioChem Engin/Biotechnol 114:107CrossRefGoogle Scholar
  176. 176.
    Dib N, Dinsmore J, Lababidi Z, Diethrich E et al (2009) JACC Cardiovasc Interv 2:9PubMedCrossRefGoogle Scholar
  177. 177.
    Menasche P, Hagege AA, Vilquin JT, Desnos M, Abergel E, Pouzet B, Bel A, Sarateanu S, Scorsin M, Schwartz K, Bruneval P, Benbunan M, Marolleau JP, Duboc D (2003) J Am Coll Cardiol 41:1078PubMedCrossRefGoogle Scholar
  178. 178.
    McConnell PI, del Rio CL, Jacoby DB, Pavlicova M, Kwiatkowski P, Zawadzka A, Dinsmore JH, Astra L, Wisel S, Michler RE (2005) J Thorac Cardiovasc Surg 130:1001PubMedCrossRefGoogle Scholar
  179. 179.
    Opie SR, Dib N (2006) Nat Clin Pract Cardiovasc Med Suppl 1:S42CrossRefGoogle Scholar
  180. 180.
    Silva GV, Litovsky S, Assad JAR, Sousa ALS, Martin BJ, Vela D, Coulter SC, Lin J, Ober J, Vaughn WK, Branco RVC, Oliveira EM, He RM, Geng YJ, Willerson JT, Perin EC (2005) Circulation 111:150PubMedCrossRefGoogle Scholar
  181. 181.
    Tomita S, Mickle DAG, Weisel RD, Jia ZC, Tumiati LC, Allidina Y, Liu P, Li RK (2002) J Thorac Cardiovasc Surg 123:1132PubMedCrossRefGoogle Scholar
  182. 182.
    Park H, Radisc M, Lim JO, Chang BH, Vunjak-Novakovic G (2005) In Vitro Cell Dev Biol Animal 41:188CrossRefGoogle Scholar
  183. 183.
    Omens JH (1998) Prog Biophys Mol Biol 69:559PubMedCrossRefGoogle Scholar
  184. 184.
    Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE, Roy I, Salih V, Knowles JC, Boccaccini AR (2008) Biomaterials 29:1750PubMedCrossRefGoogle Scholar
  185. 185.
    Leor J, Tuvia S, Guetta V, Manczur F, Castel D, Willenz U, Petnehazy O, Landa N, Feinberg MS, Konen E, Goitein O, Tsur-Gang O, Shaul M, Klapper L, Cohen S (2009) J Am Coll Cardiol 54:1014PubMedCrossRefGoogle Scholar
  186. 186.
    Jin JY, Jeong SI, Shin YM, Lim KS, Shin HS, Lee YM, Koh HC, Kim KS (2009) Eur J Heart Fail 11:147PubMedCrossRefGoogle Scholar
  187. 187.
    Zimmermann WH, Melnychenko I, Wasmeier G, Didie M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, Dhein S, Schwoerer A, Ehmke H, Eschenhagen T (2006) Nat Med 12:452PubMedCrossRefGoogle Scholar
  188. 188.
    Fujimoto KL, Ma ZW, Nelson DM, Hashizume R, Guan JJ, Tobita K, Wagner WR (2009) Biomaterials 30:4357PubMedCrossRefGoogle Scholar
  189. 189.
    Christman KL, Vardanian AJ, Fang QZ, Sievers RE, Fok HH, Lee RJ (2004) J Am Coll Cardiol 44:654PubMedCrossRefGoogle Scholar
  190. 190.
    Ryu JH, Kim IK, Cho SW, Cho MC, Hwang KK, Piao H, Piao S, Lim SH, Hong YS, Choi CY, Yoo KJ, Kim BS (2005) Biomaterials 26:319PubMedCrossRefGoogle Scholar
  191. 191.
    Kofidis T, de Bruin JL, Hoyt G, Lebl DR, Tanaka M, Yamane T, Chang CP, Robbins RC (2004) J Thorac Cardiovasc Surg 128:571PubMedCrossRefGoogle Scholar
  192. 192.
    Davis ME, Motion JPM, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang SG, Lee RT (2005) Circulation 111:442PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • S. Ramakrishna
    • 1
    • 2
    • 3
  • R. Jose
    • 1
    • 4
  • P. S. Archana
    • 1
  • A. S. Nair
    • 1
  • R. Balamurugan
    • 1
  • J. Venugopal
    • 1
  • W. E. Teo
    • 1
  1. 1.Healthcare and Energy Materials LaboratoryNational University of SingaporeSingaporeSingapore
  2. 2.Institute of Materials Research and Engineering (IMRE)SingaporeSingapore
  3. 3.King Saud UniversityRiyadhKingdom of Saudi Arabia
  4. 4.Faculty of Industrial Science and TechnologyUniversiti Malaysia PahangPahangMalaysia

Personalised recommendations