Skip to main content

Advertisement

Log in

Comparison between the process–structure–property relationships of silica foams prepared through two different processing routes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cellular silica with improved framework, crosslinking, and stability properties are desirable for applications in thermal insulation. A process for the preparation of cellular silica foam with interconnected cells with tailored porosity and pore size distribution has been attempted. The silica foams have been prepared through two different methods; surfactant- and particle-based stabilization. The silica foams prepared through two different processes namely surfactant-stabilized foams (SSF) and particle-stabilized foams (PSF) have exhibited a wide range of differences in their structure which in turn have shown to affect the final properties of the foam. The cell size distributions in SSF (89 vol% porosity) and PSF (85 vol% porosity) have been found in the range of 50–250 μm (monomodal) and 4–10 μm and 50–100 μm (bimodal), respectively, whereas the cell counts of both have been found in close proximity. The microstructure of both the sintered SSF as well as PSF samples foams have shown an open and interconnected porosity with the permeability of both in the region of ~10−8 m2. The mechanical (compressive) strength and Young’s modulus of the PSF are a third of that in SSF. The structure–property relationship of both the SSF and PSF and their comparison have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sepulveda P (1997) Am Ceram Soc Bull 76:61

    CAS  Google Scholar 

  2. Scheffler M, Colombo P (2005) Cellular ceramics: structure, manufacturing, properties and applications. Wiley-VCH, UK

    Google Scholar 

  3. Woyansky JS, Scott CE, Minnear WP (1992) Am Ceram Soc Bull 71:1674

    Google Scholar 

  4. Saracco G, Montanaro L (1995) Ind Eng Chem Res 34:1471

    Article  CAS  Google Scholar 

  5. Kim H, Lee S, Han Y, Park J (2006) J Mater Sci 41:6150. doi:10.1007/s10853-006-0574-x

    Article  CAS  ADS  Google Scholar 

  6. Ruruta S, Katsuki H, Komarneni S (2001) J Porous Mater 8:43

    Article  Google Scholar 

  7. Montanaro L, Jorand Y, Fantozzi G, Negro A (1998) J Eur Ceram Soc 18:1339

    Article  CAS  Google Scholar 

  8. Hing KA (2005) Int J Ceram Technol 2:184

    Article  CAS  Google Scholar 

  9. de sousa E, Rambo CR, Hotza D, de Oliveira APN, Fey T, Greil P (2008) Mater Sci Eng A 476:89

    Article  Google Scholar 

  10. Fujiu T (1990) J Am Ceram Soc 73:85

    Article  CAS  Google Scholar 

  11. Sepulveda P, Binner JGP (1999) J Eur Ceram Soc 19:2059

    Article  CAS  Google Scholar 

  12. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, UK

    Google Scholar 

  13. Carn F, Colin A, Achard M-F, Deleuze H, Saadi Z, Backov R (2004) Adv Mater 16:140

    Article  CAS  Google Scholar 

  14. Gonzenbach UT, Studart AR, Tervoort E, Gauckler LJ (2007) J Am Ceram Soc 90:16

    Article  CAS  Google Scholar 

  15. Du ZP, Bilbao-Montoya MP, Binks BP, Dickinson E, Ettelaie R, Murray BS (2003) Langmuir 19(8):3106

    Article  CAS  Google Scholar 

  16. Dickinson E, Ettelaie R, Kostakis T, Murray BS (2004) Langmuir 20:8517

    Article  CAS  PubMed  Google Scholar 

  17. Binks BP, Horozov TS (2005) Angew Chem Int Ed 44:3722

    Article  CAS  Google Scholar 

  18. Gonzenbach UT, Studart AR, Tervoort E, Gauckler LJ (2006) Angew Chem Int Ed 118:3606

    Google Scholar 

  19. Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ (2006) J Am Ceram Soc 89:1771

    Article  CAS  Google Scholar 

  20. Carn F, Colin A, Pitois O, Adler M, Backov R (2009) Langmuir 25:7847

    Article  CAS  PubMed  Google Scholar 

  21. Carn F, Steunou N, Colin A, Livage J, Backov R (2005) Chem Mater 17:644

    Article  CAS  Google Scholar 

  22. Wang HN, Yuan P, Zhou L, Guo YN, Zou J, Yu AM, Lu GQ, Yu CZ (2009) J Mater Sci 44:6484. doi:10.1007/s10853-009-3578-5

    Article  CAS  ADS  Google Scholar 

  23. Carn F, Colin A, Achard MF, Deleuze H, Sanchez C, Backov R (2005) Adv Mater 17:62

    Article  CAS  Google Scholar 

  24. Carn F, Achard M-F, Babot O, Deleuze H, Reculusa S, Backov R (2005) J Mater Chem 15:3887

    Article  CAS  Google Scholar 

  25. Carn F, Derré A, Neri W, Babot O, Deleuze H, Backov R (2005) New J Chem 29:1346

    Article  CAS  Google Scholar 

  26. Leroy CM, Carn F, Trinquecost M, Backov R, Delhaès P (2007) Carbon 45:2317

    Article  CAS  Google Scholar 

  27. Backov R (2006) Soft Matter 2:452

    Article  CAS  Google Scholar 

  28. Binks BP (2002) Curr Opin Colloid Interface Sci 7:21

    Article  CAS  Google Scholar 

  29. Mishra S, Mitra R, Vijayakumar M (2008) J Eur Ceram Soc 28:1769

    Article  CAS  Google Scholar 

  30. Mishra S, Mitra R, Vijayakumar M (2009) Mater Lett 63:2649

    Article  CAS  Google Scholar 

  31. ASTM International (1999) C 577-99:99-102

  32. Scheidegger AE (1974) The physics of flow through porous media, chap 4, 7. University of Toronto Press, Toronto, Canada

    Google Scholar 

  33. Carlos A, Leon LY (1998) Adv Colloid Interface Sci 76–77:341

    Google Scholar 

  34. Jena A, Gupta K (2002) Ceram Eng Sci Proc 23:277

    Article  CAS  Google Scholar 

  35. Brezny R, Green DJ (1993) J Am Ceram Soc 76:2185

    Article  CAS  Google Scholar 

  36. Maire E, Colombo P, Adrien J, Babout L, Biasetto L (2007) J Eur Ceram Soc 27:1973

    Article  CAS  Google Scholar 

  37. Menges G, Knipschild F (1975) Polym Eng Sci 15:623

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. M. Vijayakumar, DMRL, Hyderabad for his support. Also financial help from Defence Research and Development Organization (DRDO), INDIA, for carrying out this work is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarika Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S., Mitra, R. Comparison between the process–structure–property relationships of silica foams prepared through two different processing routes. J Mater Sci 45, 4115–4125 (2010). https://doi.org/10.1007/s10853-010-4500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4500-x

Keywords

Navigation