Journal of Materials Science

, Volume 46, Issue 22, pp 7191–7197 | Cite as

Synthesis and characterization of chromium spinels as potential electrode support materials for intermediate temperature solid oxide fuel cells

Hyceltec 2009


Several spinel compositions, i.e. Mn1+x Cr2−x O4 (x = 0.7, 0.5, 0), MnFe x Cr2−x O4 (x = 0.1, 1), MgMnCrO4 and Mg1+x Cr2−x O4 (x = 0, 0.1) were synthesised and studied in terms of phase analysis, density, stability in reducing atmosphere, electrical conductivity and thermal expansion behaviour. The spinel samples were single phase, with cell parameter values in a good correlation with cation sizes. Most of the studied spinels were found to be unstable under reducing conditions of thermal treatment, except MnCr2O4, MgCr2O4 and Mg1.1Cr1.9O4. Electrical properties have been investigated by impedance spectroscopy and DC conductivity measurements at temperatures between 200 and 900 °C.


Oxide Scale Solid Oxide Fuel Cell Yttrium Stabilize Zirconia Ferritic Stainless Steel Thermal Expansion Behaviour 



The authors would like to express their gratitude to the Office of Naval Research for financial support.


  1. 1.
    Li Y, Wu J, Johnson C, Gemmen R, Scott X, Liu X (2009) Int J Hydrogen Energy 34(3):1489CrossRefGoogle Scholar
  2. 2.
    Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier Science, Amsterdam, The NetherlandsGoogle Scholar
  3. 3.
    Chen X, Hou PY, Jacobson CP, Visco SJ, De Jonghe LT (2005) Solid State Ion 176:425CrossRefGoogle Scholar
  4. 4.
    Konysheva E, Laatsch J, Wessel E, Tietz F, Christiansen N, Singheiser L, Hilpert K (2006) Solid State Ion 177:923CrossRefGoogle Scholar
  5. 5.
    Krumpelt M, Cruse TA, Ingram BJ, Routbort JL, Wang S, Salvador PA, Chen G (2010) J Electrochem Soc 157(2):B228CrossRefGoogle Scholar
  6. 6.
    Qu W, Jian L, Hill JM, Ivey DG (2006) J Power Sources 153:114CrossRefGoogle Scholar
  7. 7.
    Yunus SM, Yamauchi H, Zakaria AKM, Igawa N, Hoshikawa A, Ishii Y (2008) J Alloys Compd 454:10CrossRefGoogle Scholar
  8. 8.
    Kovtunenko PV (1997) Glass Ceram 54(5):9CrossRefGoogle Scholar
  9. 9.
    Yang Z, Xia G, Simner SP, Stevenson JW (2005) J Electrochem Soc 152:A1896CrossRefGoogle Scholar
  10. 10.
    Larring Y, Norby T (2000) J Electrochem Soc 147:3251CrossRefGoogle Scholar
  11. 11.
    Choi JJ, Ryu J, Hahn BD, Yoon WH, Lee BK, Park DS (2009) J Mater Sci 44:843. doi: 10.1007/s10853-008-3132-x CrossRefGoogle Scholar
  12. 12.
    Petric A, Ling H (2007) J Am Ceram Soc 90(5):1515CrossRefGoogle Scholar
  13. 13.
    Shannon RD (1976) Acta Cryst A32:751Google Scholar
  14. 14.
    Suzuki T, Adachi K, Katsufuji T (2007) J Magn Magn Mater 310:780CrossRefGoogle Scholar
  15. 15.
    Yunus SM, Shim H-S, Lee C-H, Asgar MA, Ahmed FU, Zakaria AKM (2002) J Magn Magn Mater 241:40CrossRefGoogle Scholar
  16. 16.
    Yakabe H, Baba Y, Sakurai T, Yoshitaka Y (2004) J Power Sources 135:9CrossRefGoogle Scholar
  17. 17.
    Lu Z, Zhu J (2005) J Am Ceram Soc 88(4):1050CrossRefGoogle Scholar
  18. 18.
    Sakai N, Horita T, Xiong YP, Yamaji K, Kishimoto H, Brito ME, Yokokawa H, Maruyama T (2005) Solid State Ion 176:681CrossRefGoogle Scholar
  19. 19.
    Irvine JTS, Sinclair DC, West AR (1990) Adv Mater 2(3):132CrossRefGoogle Scholar
  20. 20.
    Irvine JTS, Huanosta A, Valenzuela R, West AR (1990) J Am Ceram Soc 73(3):729CrossRefGoogle Scholar
  21. 21.
    Moriwake H, Tanaka I, Oba F, Koyama Y, Adachi H (2002) Phys Rev B 65:153103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of ChemistryUniversity of St. AndrewsSt. Andrews, FifeScotland, UK

Personalised recommendations