Journal of Materials Science

, Volume 45, Issue 17, pp 4545–4553 | Cite as

Unusual macroscopic shearing patterns observed in metals processed by high-pressure torsion

  • Y. Cao
  • M. Kawasaki
  • Y. B. Wang
  • S. N. Alhajeri
  • X. Z. Liao
  • W. L. Zheng
  • S. P. Ringer
  • Y. T. Zhu
  • T. G. Langdon
Ultrafine Grained Materials


A duplex stainless steel was processed by high-pressure torsion (HPT) and then examined by optical microscopy. The results reveal unusual flow patterns including double-swirl strains, shear vortices, and the presence of significant local turbulence. Similar flow behavior was also visible in disks of high-purity aluminum and a Zn–22%Al eutectoid alloy. These complex flow patterns and the presence of double-swirls are consistent with the presence of a Kelvin–Helmholtz instability during HPT processing where this may arise if there are local shear velocity gradients between adjacent positions within the HPT disks.


Shear Strain Friction Stir Welding Duplex Stainless Steel Helmholtz Instability Strain Gradient Plasticity 



The authors express their great appreciation to the scientific and technical input and support from the Australian Microscopy & Microanalysis Research Facility node at the University of Sydney. This project was supported by the Australian Research Council [Grant No. DP0772880 (Y.C., Y.B.W., and X.Z.L.)], the U.S. DOE IPP program (Y.T.Z.), and the National Science Foundation of the United States [Grant No. DMR-0855009 (M.K. and T.G.L.)].


  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  2. 2.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  3. 3.
    Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893CrossRefGoogle Scholar
  4. 4.
    Zhilyaev AP, Kim BK, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Scr Mater 48:575CrossRefGoogle Scholar
  5. 5.
    Zhilyaev AP, Kim BK, Szpunar JA, Baró MD, Langdon TG (2005) Mater Sci Eng A391:377Google Scholar
  6. 6.
    Valiev RZ, Ivanisenko YuV, Rauch EF, Baudelet B (1996) Acta Mater 44:4705CrossRefGoogle Scholar
  7. 7.
    Wetscher F, Vorhauer A, Stock R, Pippan R (2004) Mater Sci Eng A387–389:809Google Scholar
  8. 8.
    Wetscher F, Pippan R, Sturm S, Kauffmann F, Scheu C, Dehm G (2006) Metall Mater Trans 37A:1963CrossRefGoogle Scholar
  9. 9.
    Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Scr Mater 44:2753CrossRefGoogle Scholar
  10. 10.
    Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753CrossRefGoogle Scholar
  11. 11.
    Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) J Mech Phys Solids 56:1186CrossRefADSGoogle Scholar
  12. 12.
    Cao Y, Wang YB, Alhajeri SN, Liao XZ, Zheng WL, Ringer SP, Langdon TG, Zhu YT (2010) J Mater Sci 45:765. doi: 10.1007/s10853-009-3998-2 CrossRefADSGoogle Scholar
  13. 13.
    Kawasaki M, Ahn B, Langdon TG (2010) Acta Mater 58:919CrossRefGoogle Scholar
  14. 14.
    Kawasaki M, Langdon TG (2008) Mater Sci Eng A498:341Google Scholar
  15. 15.
    Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203CrossRefGoogle Scholar
  16. 16.
    Xu C, Horita Z, Langdon TG (2008) Acta Mater 56:5168CrossRefGoogle Scholar
  17. 17.
    Edalati K, Fujioka T, Horita Z (2008) Mater Sci Eng A497:168Google Scholar
  18. 18.
    Ito Y, Horita Z (2009) Mater Sci Eng A503:32Google Scholar
  19. 19.
    Furukawa M, Ma Y, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1998) Mater Sci Eng A241:122Google Scholar
  20. 20.
    Edalati K, Horita Z, Langdon TG (2009) Scr Mater 60:9CrossRefGoogle Scholar
  21. 21.
    Zhang HW, Zhang Z, Chen JT (2007) J Mater Process Technol 183:62CrossRefGoogle Scholar
  22. 22.
    Guduru PR, Ravichandran G, Rosakis AJ (2001) Phys Rev E 64:036128CrossRefADSGoogle Scholar
  23. 23.
    Rangel RH, Sirignano WA (1988) Phys Fluids 31:1845CrossRefADSGoogle Scholar
  24. 24.
    Fernando HJS (1991) Ann Rev Fluid Mech 23:455CrossRefADSGoogle Scholar
  25. 25.
    Funada T, Joseph DD (2001) J Fluid Mech 445:263CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Nakamura TKM, Fujimoto M (2008) Phys Rev Lett 101:165002CrossRefADSPubMedGoogle Scholar
  27. 27.
    Wright S, Presura R, Esaulov A, Neff S, Plechaty C, Martinez D, Haboub A (2009) Astrophys Space Sci 322:201CrossRefADSGoogle Scholar
  28. 28.
    Yamamoto T (2009) J Geophys Res 114:A06207CrossRefGoogle Scholar
  29. 29.
    De Silva IPD, Fernando HJS, Eaton F, Hebert D (1996) Earth Planet Sci Lett 143:207CrossRefGoogle Scholar
  30. 30.
    Plant RS, Keith GJ (2007) Boundary-Layer Meterol 122:1CrossRefADSGoogle Scholar
  31. 31.
    van Haren H, Gostiaux L (2010) Geophys Res Lett 37:L03605CrossRefGoogle Scholar
  32. 32.
    Vorhauer A, Pippan R (2004) Scr Mater 51:921CrossRefGoogle Scholar
  33. 33.
    Edalati K, Fujioka T, Horita Z (2009) Mater Trans 50:44CrossRefGoogle Scholar
  34. 34.
    Xu C, Horita Z, Langdon TG (2010) Mater Trans 51:2CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Y. Cao
    • 1
  • M. Kawasaki
    • 2
  • Y. B. Wang
    • 1
  • S. N. Alhajeri
    • 3
  • X. Z. Liao
    • 1
  • W. L. Zheng
    • 4
  • S. P. Ringer
    • 5
  • Y. T. Zhu
    • 6
  • T. G. Langdon
    • 2
    • 3
  1. 1.School of Aerospace, Mechanical and Mechatronic EngineeringThe University of SydneySydneyAustralia
  2. 2.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Materials Research Group, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK
  4. 4.Shanghai Research Institute of MaterialsShanghaiChina
  5. 5.Australian Centre for Microscopy & MicroanalysisThe University of SydneySydneyAustralia
  6. 6.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations