Advertisement

Journal of Materials Science

, Volume 45, Issue 14, pp 3824–3832 | Cite as

Effect of pH value on the synthesis and characterization of Ba0.5Sr0.5Co0.8Fe0.2O3−δ powders prepared by the citrate–EDTA complexing method

  • I.-Ming Hung
  • Chen-Yu Liang
  • Chun-Jing Ciou
  • Ren-Zheng Song
  • Zu-Yu Lai
Article

Abstract

This study reports the successful preparation of potential candidate Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) oxides for intermediate-temperature solid oxide fuel cells (IT-SOFCs) by a combined citrate-ethylenediaminetetraacetic acid (EDTA) complexing method. The resulting crystal properties, chemical composition, conductivity, and electrochemical properties were studied by X-ray diffraction (XRD), inductively coupled plasma mass spectroscopy (ICP-MS), energy dispersive spectrum (EDS), four-point DC measurement and AC impedance. The X-ray diffraction results of all samples with different pH values reveal a basic perovskite structure. Although samples prepared from different pH solutions have a similar structure, their chemical composition and grain morphologies are different. The optimized composition of BSCF is the sample prepared from the precursor solution with a pH value of 6; this produced highest conductivity at 50.2 S/cm at 400 °C, which is 1.3 times higher than the sample prepared from the precursor solution with a pH value of 9. Electrochemical impedance spectra at an intermediate temperature reveal the better electrochemical performance of BSCF electrode prepared from the solution with pH of 6. The lowest polarization resistance values for charge transfer and oxygen diffusion are 0.07 and 0.11 Ω cm2 at 800 °C, respectively.

Keywords

Inductively Couple Plasma Mass Spectroscopy Precursor Solution Electrochemical Impedance Spectrum Cathode Electrode Energy Dispersive Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported by the National Science Council of Taiwan (NSC 96-2221-E-155-053 and NSC 97-2221-E-155-059).

References

  1. 1.
    Minh NQ (1993) J Am Ceram Soc 76:563CrossRefGoogle Scholar
  2. 2.
    Adler SB, Lane JA, Steele BCH (1996) J Electrochem Soc 143:3554CrossRefGoogle Scholar
  3. 3.
    Teraoka Y, Zhang HM, Furukawa S, Yamazoe N (1985) Chem Lett 167:1743CrossRefGoogle Scholar
  4. 4.
    Huang K, Wan J, Goodenough JB (2001) J Mater Sci 36:1093. doi: 10.1023/A:1004813305237 CrossRefGoogle Scholar
  5. 5.
    Shao ZP, Yang WS, Cong Y, Dong H, Tong J, Xiong GX (2000) J Membr Sci 172:177CrossRefGoogle Scholar
  6. 6.
    Shao ZP, Haile SM (2004) Nature 431:170CrossRefPubMedADSGoogle Scholar
  7. 7.
    Uchida H, Yoshida M, Watanabe M (1999) J Electrochem Soc 146:1CrossRefGoogle Scholar
  8. 8.
    Kharton VV, Naumovich EN, Kovalevsky AV, Viskup AP, Figueiredo FM, Bashmakov IA, Marques FMB (2000) Solid State Ion 138:135CrossRefGoogle Scholar
  9. 9.
    Tan L, Gu X, Yang L, Jin W, Zhang L, Xu N (2003) J Membr Sci 212:157CrossRefGoogle Scholar
  10. 10.
    Wei B, Lu Z, Huang X, Miao J, Sha X, Xin X, Su W (2006) J Euro Ceram Soc 26:2827CrossRefGoogle Scholar
  11. 11.
    Mosadeghkhah A, Alaee MA, Mohammadi T (2007) Mater Des 28:1699Google Scholar
  12. 12.
    Lee S, Lim Y, Lee EA, Hwang HJ, Moon JW (2006) J Power Sourc 157:848CrossRefGoogle Scholar
  13. 13.
    Carter S, Selcuk A, Chater RJ, Kajda J, Kilner JA, Steele BCH (1992) Solid State Ion 53–56:597CrossRefGoogle Scholar
  14. 14.
    Li S, Lu Z, Wei B, Huang X, Miao J, Cao G, Zhu R, Su W (2006) J Alloy Compd 426:408CrossRefGoogle Scholar
  15. 15.
    Chen Z, Ran R, Zhou W, Shao Z, Liu S (2007) Electrochim Acta 52:7343CrossRefGoogle Scholar
  16. 16.
    Tai LW, Nasrallah MM, Anerson HU, Sparlin DM, Sehlin SR (1995) Solid State Ion 76:259CrossRefGoogle Scholar
  17. 17.
    Shao ZP, Haile SM, Ahn J, Ronney PD, Zhan ZL, Barnett SA (2005) Nature 435:795CrossRefPubMedADSGoogle Scholar
  18. 18.
    Wang Y, Wang S, Wang Z, Wen T, Wen Z (2007) J Alloy Compd 428:286CrossRefGoogle Scholar
  19. 19.
    Li S, Zhe L, Ai N, Chen K, Su W (2007) J Power Sourc 165:97CrossRefGoogle Scholar
  20. 20.
    Baumann FS, Fleig J, Habermeier HU, Maier J (2006) Solid State Ion 177:3187CrossRefGoogle Scholar
  21. 21.
    Hwang HJ, Moon JW, Lee S, Lee EA (2005) J Power Sourc 145:243CrossRefGoogle Scholar
  22. 22.
    Yang CCT, Cho HJ, Wei WJ (2002) J Eur Ceram Soc 22:199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • I.-Ming Hung
    • 1
  • Chen-Yu Liang
    • 1
  • Chun-Jing Ciou
    • 1
  • Ren-Zheng Song
    • 1
  • Zu-Yu Lai
    • 1
  1. 1.Yuan Ze Fuel Cell Center/Department of Chemical Engineering and Materials ScienceYuan Ze UniversityChungliTaiwan

Personalised recommendations