Journal of Materials Science

, Volume 45, Issue 17, pp 4561–4570 | Cite as

Avoiding cracks and inhomogeneities in billets processed by ECAP

  • Paulo R. Cetlin
  • Maria Teresa P. Aguilar
  • Roberto B. Figueiredo
  • Terence G. Langdon
Ultrafine Grained Materials


Although equal-channel angular pressing (ECAP) is now an established technique for producing bulk ultrafine-grained metallic materials, processing difficulties may arise because of the occurrence of cracking or inhomogeneities. This problem is examined with reference to experimental data for aluminum and magnesium alloys and a Pb–Sb alloy. It is shown that effective procedures are available for avoiding the development of inhomogeneities and the cracking of billets during ECAP: these procedures include introducing a pre-deformation of the as-cast material prior to ECAP, decreasing the strain produced in each ECAP pass by using dies with angles higher than 90°, and controlling the rotation of the billets between sequential passes.


Aluminum Alloy Flow Stress Magnesium Alloy Strain Rate Sensitivity Strain Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the National Science Foundation of the United States under Grant No. DMR-0855009. PRC and MTPA are grateful for the financial support of CNPq (Brazilian National Research Council), CAPES (Post-Graduate Commission of the Education Ministry of Brazil), and FAPEMIG (Foundation for the Support of Research in Minas Gerais State).


  1. 1.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  2. 2.
    Valiev RZ, Semenova IP, Latysh VV, Rack H, Lowe TC, Petruzelka J, Dluhos L, Hrusak D, Sochova L (2008) Adv Eng Mater 10:B15CrossRefGoogle Scholar
  3. 3.
    Aleksandrov IV, Raab GI, Shestakova LO, Kil’mametov AR, Valiev RZ (2002) Phys Met Metallogr 93:493Google Scholar
  4. 4.
    Furui M, Kitamura H, Anada H, Langdon TG (2007) Acta Mater 55:1083CrossRefGoogle Scholar
  5. 5.
    Figueiredo RB, Cetlin PR, Langdon TG (2007) Acta Mater 55:4769CrossRefGoogle Scholar
  6. 6.
    Segal VM (1999) Mater Sci Eng A271:322Google Scholar
  7. 7.
    Semiatin SL, DeLo DP (2000) Mater Des 21:311Google Scholar
  8. 8.
    Fagin PN, Brown JO, Brown TM, Jata KV, Semiatin SL (2001) Metall Mater Trans 32A:1869CrossRefGoogle Scholar
  9. 9.
    Kang F, Wang JT, Peng Y (2008) Mater Sci Eng A487:68Google Scholar
  10. 10.
    DeLo DP, Semiatin SL (1999) Metall Mater Trans 30A:2473CrossRefGoogle Scholar
  11. 11.
    Horita Z, Matsubara K, Makii K, Langdon TG (2002) Scr Mater 47:255CrossRefGoogle Scholar
  12. 12.
    Stolyarov VV, Lapovok R, Brodova IG, Thomson PF (2003) Mater Sci Eng A357:159Google Scholar
  13. 13.
    Lapovok RY (2005) J Mater Sci 40:341. doi: 10.1007/s10853-005-6088-0 CrossRefADSGoogle Scholar
  14. 14.
    Xu C, Xia K, Langdon TG (2009) Mater Sci Eng A527:205Google Scholar
  15. 15.
    Figueiredo RB, Aguilar MTP, Cetlin PR (2006) Mater Sci Eng A430:179Google Scholar
  16. 16.
    Figueiredo RB, Cetlin PR, Langdon TG (2009) Mater Sci Eng A518:124Google Scholar
  17. 17.
    Figueiredo RB, Cetlin PR, Langdon TG (2010) Metall Mater Trans A 41:778CrossRefGoogle Scholar
  18. 18.
    Figueiredo RB, Langdon TG (2009) Mater Sci Eng A501:105Google Scholar
  19. 19.
    Slámová M, Ocenázek V, Vander Voort G (2004) Mater Charact 52:165CrossRefGoogle Scholar
  20. 20.
    Figueiredo RB, Costa ALM, Andrade MS, Aguilar MTP, Cetlin PR (2006) Mater Res (Revista Ibero-Americano de Materiais Brazil) 9:101Google Scholar
  21. 21.
    Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A257:328Google Scholar
  22. 22.
    Lapovok R, Tóth LS, Molinari A, Estrin Y (2009) J Mech Phys Solids 57:122CrossRefADSGoogle Scholar
  23. 23.
    Semiatin SL, Segal VM, Goforth RE, Frey ND, DeLo DP (1999) Metall Mater Trans 30A:1425CrossRefGoogle Scholar
  24. 24.
    Furukawa M, Horita Z, Nemoto M, Langdon TG (2001) J Mater Sci 36:2835. doi: 10.1023/A:1017932417043 CrossRefGoogle Scholar
  25. 25.
    Figueiredo RB, Pinheiro IP, Aguilar MTP, Modenesi PJ, Cetlin PR (2006) J Mater Proc Technol 180:30CrossRefGoogle Scholar
  26. 26.
    Alexander DJ, Beyerlein IJ (2005) Mater Sci Eng A410–411:480Google Scholar
  27. 27.
    Beyerlein IJ, Li S, Alexander DJ (2005) Mater Sci Eng A410–411:201Google Scholar
  28. 28.
    Beyerlein IJ, Tome CN (2007) Int J Plast 23:640CrossRefGoogle Scholar
  29. 29.
    Beyerlein IJ, Alexander DJ, Tomé CN (2007) J Mater Sci 42:1733. doi: 10.1007/s10853-006-0906-x CrossRefADSGoogle Scholar
  30. 30.
    Xu C, Száraz Z, Trojanová S, Lukáč P, Langdon TG (2008) Mater Sci Eng A497:206Google Scholar
  31. 31.
    Humphreys FJ, Hatherly M (1995) Recrystallization and Related Annealing Phenomena. Pergamon Press, OxfordGoogle Scholar
  32. 32.
    Ion SE, Humphreys FJ, White SH (1982) Acta Metall 30:1909CrossRefGoogle Scholar
  33. 33.
    Galiyev A, Kaibyshev R, Gottstein G (2001) Acta Mater 49:1199CrossRefGoogle Scholar
  34. 34.
    Beer AG, Barnett MR (2006) Mater Sci Eng A423:292Google Scholar
  35. 35.
    Al-Samman T, Gottstein G (2008) Mater Sci Eng A490:411Google Scholar
  36. 36.
    Matsubara K, Miyahara Y, Horita Z, Langdon TG (2003) Acta Mater 51:3073CrossRefGoogle Scholar
  37. 37.
    Semiatin SL, Segal VM, Goetz RL, Goforth RE, Hartwig T (1995) Scr Metall Mater 33:535CrossRefGoogle Scholar
  38. 38.
    Cockcroft MG, Latham DJ (1968) J Inst Met 96:33Google Scholar
  39. 39.
    Oh SI, Chen CC, Kobayashi S (1979) J Eng Ind 101:36Google Scholar
  40. 40.
    Bridgman PW (1952) Studies in large plastic flow and fracture. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Paulo R. Cetlin
    • 1
  • Maria Teresa P. Aguilar
    • 2
  • Roberto B. Figueiredo
    • 1
    • 3
  • Terence G. Langdon
    • 3
    • 4
  1. 1.Department of Metallurgical and Materials Engineering, School of EngineeringFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Department of Materials Engineering and Construction, School of EngineeringFederal University of Minas GeraisBelo HorizonteBrazil
  3. 3.Materials Research Group, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK
  4. 4.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations