Journal of Materials Science

, Volume 45, Issue 18, pp 4963–4969 | Cite as

Preparation and characterization of super-hydrophobic and oleophobic surface

  • Yuji Ohkubo
  • Issei Tsuji
  • Shogo Onishi
  • Kazufumi Ogawa
ICAM 2009


A novel method for preparing and characterizing super-hydrophobic and oleophobic surface is presented. Aluminum (Al) substrate was roughened by sandblasting and electrolytic etching to obtain micro- and nano-sized complex morphologies. Then, its substrate was covered by a chemically adsorbed monolayer (CAM) containing a fluorocarbon group. The surface of Al substrate roughened and covered with CAM was observed by scanning electron microscope and atomic force microscope. The roughnesses of the surface were ca. 100 μm and ca. 30–60 nm, respectively. The surface of the wettability was characterized by contact angle measurements and its surface indicated super-hydrophobicity and oleophobicity: the water contact angle (WCA) and oil contact angle (OCA) of hexadecane was 158.9° and 139.6°, respectively. The wettability was also characterized by solid surface energy. The solid surface energy of each solvent was obtained from the equation by Neumann et al. These values were extremely low, ranging from 0.31 to 1.29 mN/m. The total solid surface energy was obtained from the equation by Kaelble et al. The value was 0.3 mN/m. Their values indicated that the hydrophobicity and oleophobicity of our sample reached the highest level possible. In addition, our research demonstrates that it is easy to compare many different surfaces with super-hydrophobicity and oleophobicity using the solid surface energy.


Contact Angle Water Contact Angle Contact Angle Measurement Wako Pure Chemical Industry Droplet Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Japan Aerospace Exploration Agency (JAXA). We gratefully thank Professor. S. Yoda and Dr. S. Matsumoto of JAXA for their helpful comments. In addition, we wish to thank Nano Science Corporation for help in AFM observation.


  1. 1.
    Wenzel RN (1936) Ind Eng Chem 28:988CrossRefGoogle Scholar
  2. 2.
    Ulman A (1996) Thin Solid Film 273:48CrossRefADSGoogle Scholar
  3. 3.
    Guan K, Lu B, Yin Y (2003) Surf Coat Technol 173:219. doi: 10.1016/S0257-8972(03)00521-8 CrossRefGoogle Scholar
  4. 4.
    Kiuru M, Alakoski E (2004) Mater Lett 58:2213. doi: 10.1016/j.matlet.2004.01.024 CrossRefGoogle Scholar
  5. 5.
    Zhu L, Feng Y, Ye X, Zhou Z (2006) Sens Actuators A 130–131:595. doi: 10.1016/j.sna.2005.12.005 Google Scholar
  6. 6.
    Zhang J, Huang W, Han Y (2006) Langmuir 22:2946. doi: 10.1021/la053428q CrossRefPubMedGoogle Scholar
  7. 7.
    Gao L, McCarthy TJ (2007) Langmuir 23:3762. doi: 10.1021/la062634a CrossRefPubMedGoogle Scholar
  8. 8.
    Qian B, Shen Z (2005) Langmuir 21:9007. doi: 10.1021/la051308c CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang X, Jin M, Liu Z, Nishimoto S, Saito H, Murakami T, Fujishima A (2006) Langmuir 22:9477. doi: 10.1021/la0618869 CrossRefPubMedGoogle Scholar
  10. 10.
    He B, Patankar NA, Lee J (2003) Langmuir 19:4999. doi: 10.1021/la0268348 CrossRefGoogle Scholar
  11. 11.
    Hosono E, Fujihara S, Honma I, Zhou H (2005) J Am Chem Soc 127:13459. doi: 10.1002/adma.200500275 CrossRefGoogle Scholar
  12. 12.
    Sagiv J (1979) Isr J Chem 18:339Google Scholar
  13. 13.
    Sagiv J (1980) J Am Chem Soc 102:92CrossRefGoogle Scholar
  14. 14.
    Ulman A (1996) Chem Rev 96:1533CrossRefPubMedGoogle Scholar
  15. 15.
    Schreiber F (2000) Prog Surf Sci 65:151. doi: 10.1016/S0079-6816(00)00024-1 CrossRefADSGoogle Scholar
  16. 16.
    Tada T, Noriyasu H, Kawamura Y, Ohkubo Y, Ogawa K (2009) J Textile Eng 55:13. doi: 10.4188/jte.55.13 CrossRefGoogle Scholar
  17. 17.
    Yamamoto H, Ohkubo Y, Ogawa K, Utsumi K (2009) Precis Eng 33:229. doi: 10.1016/j.precisioneng.2008.07.006 CrossRefGoogle Scholar
  18. 18.
    Li D, Neumann AW (1992) J Colloid Interface Sci 148:190. doi: 10.1016/0021-9797(92)90127-8 CrossRefGoogle Scholar
  19. 19.
    Kaelble DH, Uy KC (1970) J Adhesion 2:50. doi: 10.1080/0021846708544579 CrossRefGoogle Scholar
  20. 20.
    Kaelble DH (1970) J Adhesion 2:66. doi: 10.1080/0021846708544582 CrossRefGoogle Scholar
  21. 21.
    Jańczuk B, Kerkeb ML, Biatrowicz T, González-Caballero F (1992) J Colloid Interface Sci 151:333. doi: 10.1016/0021-9797(92)90482-2 Google Scholar
  22. 22.
    Shibuichi S, Yamamoto T, Onda T, Tsuji K (1998) J Colloid Interface Sci 208:287CrossRefPubMedGoogle Scholar
  23. 23.
    Han D, Steckl AJ (2009) Langmuir 25:9454. doi: 10.1021/la900660v CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yuji Ohkubo
    • 1
    • 2
  • Issei Tsuji
    • 1
  • Shogo Onishi
    • 1
  • Kazufumi Ogawa
    • 1
  1. 1.Department of Advanced Materials Science, Graduate School of EngineeringKagawa UniversityTakamatsu CityJapan
  2. 2.Development and Researching GroupKagawa Gakusei Venture Ltd.Takamatsu CityJapan

Personalised recommendations