Journal of Materials Science

, Volume 45, Issue 12, pp 3350–3366 | Cite as

Static and dynamic characterization of composition cork for sandwich beam cores

  • R. A. S. Moreira
  • F. J. Q. de Melo
  • J. F. Dias Rodrigues


Composition cork can be regarded as an interesting solution for light-damped sandwich panels. Despite the emergent interest on these materials for structural applications, there is a lack of information concerning its static and dynamic properties. This study presents a comparative study on a set of different experimental characterization methodologies applied on a selected agglomerated cork for vibration damping applications. The obtained results support the assumption of an air spring/viscous-based mechanism ruling the low-frequency behaviour of these materials. This assumed behaviour is a result from the observations of the cellular microstructure of natural and composition corks. Indicative values for the Young’s modulus, storage modulus and loss factor are provided as results from this study. In addition, a multilayer beam finite element, based on a mixed formulation, is proposed to be applied in an inverse characterization methodology and to be used also for the experimental validation tasks. The finite element proved to be efficient and accurate.


Storage Modulus Complex Modulus Sandwich Panel Sandwich Beam Inverse Identification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the Fundação para a Ciência e a Tecnologia (FCT) of the Ministério da Ciência e da Tecnologia of Portugal for the financial supported under the research project PTDC/EME-PME/66741/2006. Authors also acknowledge Corticeira Amorim Indústria SA company for providing the composition cork used in this study.


  1. 1.
    Nashif AD, Jones DIG, Henderson JP (1985) Vibration damping, 1st edn. John Wiley & Sons, New YorkGoogle Scholar
  2. 2.
    Jones DIG (2001) Handbook of viscoelastic vibration damping, 1st edn. John Wiley & Sons, New YorkGoogle Scholar
  3. 3.
    Moreira RAS, Dias Rodrigues J (2006) Int J Struct Stab Dyn 6(3):397CrossRefGoogle Scholar
  4. 4.
    Moreira RAS, Dias Rodrigues J (2010) J Sandwich Struct Mater 12:181CrossRefGoogle Scholar
  5. 5.
    Santos Silva J, Moreira RAS, Dias Rodrigues J (2010) J Sandwich Struct Mater. doi: 10.1177/1099636209104538
  6. 6.
    Dias Rodrigues J, Moreira RAS (2007) Sandwich structures with cork compound layers: a new vibration control solution. POCI/EME/61967/2004 Final Report, FEUP/UAGoogle Scholar
  7. 7.
    Gibson LJ, Easterling KE, Ashby MF (1981) Proc R Soc Lond A 337:99ADSGoogle Scholar
  8. 8.
    Fortes MA, Rosa ME, Pereira H (2004) A cortiça. IST Press, LisboaGoogle Scholar
  9. 9.
    Gibson LJ, Ashby MF (1997) Cellular solids, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  10. 10.
    Mano JF (2002) J Mater Sci 37:257. doi: 10.1023/A:1013635809035 CrossRefGoogle Scholar
  11. 11.
    Pereira H (2007) Cork: biology, production and uses, 1st edn. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Castro O, Silva JM, Devezas T, Silva A, Gil L (2010) Mater Des 31(1):425Google Scholar
  13. 13.
    Silva SP, Sabino MA, Fernandes EM, Correlo VM, Boesel LF, Reis RL (2005) Int Mater Rev 50(6):345CrossRefGoogle Scholar
  14. 14.
    Anjos O, Pereira H, Rosa ME (2006) II Latin American IUFRO Congress, La Serena, Chile, October 23–27, 2006 (In Cd Rom)Google Scholar
  15. 15.
    Giunchi A, Versari A, Parpinello GP, Galassi S (2008) J Food Eng 88(4):576CrossRefGoogle Scholar
  16. 16.
    Gil L (2009) Materials 2:776CrossRefGoogle Scholar
  17. 17.
    Reis L, Silva A (2009) J Sandwich Struct Mater 11(6):487CrossRefGoogle Scholar
  18. 18.
    Moreira RAS, Dias Rodrigues J (2004) J Vib Control 10(4):575MATHCrossRefGoogle Scholar
  19. 19.
    Moreira RAS, Dias Rodrigues J, And Ferreira AJM (2006) Comput Mech 37(5):426MATHCrossRefGoogle Scholar
  20. 20.
    Moreira RAS, Dias Rodrigues J (2006) Comput Struct 84(19–20):1256CrossRefGoogle Scholar
  21. 21.
    Moreira RAS, Dias Rodrigues J (2010) Compos Struct 92:201CrossRefGoogle Scholar
  22. 22.
    Auricchio F, Sacco H (1999) Int J Numer Methods Eng 44(10):1481MATHCrossRefGoogle Scholar
  23. 23.
    Hughes TJR (1987) The Finite Element Method: linear static and dynamic finite element analysis, 1st edn. Prentice-Hall, New JerseyMATHGoogle Scholar
  24. 24.
    Cook RD, Malkus DS, Plesha ME (1989) Concept and applications of finite element analysis, 3rd edn. John Wiley & Sons (International Edition) Google Scholar
  25. 25.
    Piam THH, Sze K-Y (2001) Adv Struct Eng 4(1):13CrossRefGoogle Scholar
  26. 26.
    Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer-Verlag, New YorkMATHGoogle Scholar
  27. 27.
    Ross D, Ungar EE, Kerwin EM Jr (1959) Damping of plate flexural vibrations by means of viscoelastic laminae, Structural Damping. ASME Publication, New York, p 49Google Scholar
  28. 28.
    Moreira RAS, de-Carvalho R (2009) Int J Mater Eng Innov 1(2):254CrossRefGoogle Scholar
  29. 29.
    Zang C, Grafe H, Imregun M (2001) Mech Syst Signal Process 15(1):139CrossRefADSGoogle Scholar
  30. 30.
    Pascual R, Golinval JC, Razeto M (1997) Proceedings of the 15th Int. Modal Analysis Conference (IMAC XV), Orlando, FL, USA, p 587Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • R. A. S. Moreira
    • 1
  • F. J. Q. de Melo
    • 1
  • J. F. Dias Rodrigues
    • 2
  1. 1.Departamento de Engenharia MecânicaUniversidade de AveiroAveiroPortugal
  2. 2.Faculdade de Engenharia da Universidade do PortoPortoPortugal

Personalised recommendations