Journal of Materials Science

, Volume 45, Issue 12, pp 3270–3275 | Cite as

Electronic and optical properties of monoclinic and rutile vanadium dioxide

  • Guang-Hua Liu
  • Xiao-Yan Deng
  • Rui Wen


The electronic and optical properties of vanadium dioxide are investigated in the frameworks of density functional theory and GGA+U, in detail. It is found that, the metal–insulator transition in VO2 is induced by the on-site correlation effects, accompanied with a distinct charge-transfer. Unlike that in rutile phase, the energy gap in the monoclinic phase opens suddenly and abruptly, which is consistent with the experimental observation. The calculated indirect energy gap (0.32 eV) and the direct energy gap (0.58 eV) can be used to theoretically interpret the experimental optical transmission at 0.31 eV and the optical energy gap 0.6 eV, respectively. Consequently, both of them are confirmed by our optical calculation. Furthermore, our calculated optical absorption peaks agree with the experiment very well.


Versus Atom Vanadium Dioxide Generalize Gradient Approximation Bond Population Optical Absorption Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the major research program from the Ministry of Science and Technology of China under Grant No. 2009CB939901. Numerical computation of this work was carried out on the Parallel Computer Cluster of Institute for Condensed Matter Physics (ICMP) at School of Physics, Peking University.


  1. 1.
    Morin J (1959) Phys Rev Lett 3:34CrossRefADSGoogle Scholar
  2. 2.
    Takayuki U, Kozo O, Akio K (1993) J Phys Soc Jpn 62:2595CrossRefGoogle Scholar
  3. 3.
    Goering E, Schramme M, Müller O, Barth R, Paulin H, Klemm M, Denboer ML, Horn S (1997) Phys Rev B 55:4225CrossRefADSGoogle Scholar
  4. 4.
    Kim H-T, Chae B-G, Youn D-H, Maeng S-L, Kim G, Kang K-Y, Lim Y-S (2004) New J Phys 6:52CrossRefGoogle Scholar
  5. 5.
    Kim H-T, Chae B-G, Youn D-H, Lee S-J, Kim K, Lim Y-S (2005) Appl Phys Lett 86:242101CrossRefADSGoogle Scholar
  6. 6.
    Kim B-J, Lee YW, Choi S, Lim JW, Yun SJ, Kim H-T, Shin T-J, Yun H-S (2008) Phys Rev B 77:235401CrossRefADSGoogle Scholar
  7. 7.
    Eguchi R, Taguchi M, Matsunami M, Horiba K, Yamamoto K, Ishida Y, Chainani A, Takata Y, Yabashi M (2008) Phys Rev B 78:075115CrossRefADSGoogle Scholar
  8. 8.
    Xu SQ, Ma HP, Dai SX, Jiang ZG (2004) J Mater Sci 39:489. doi: 10.1023/B:JMSC.0000011503.22893.f4 CrossRefADSGoogle Scholar
  9. 9.
    Gopalakrishnan G, Ruzmetov D, Ramanathan S (2009) J Mater Sci 44:5345. doi: 10.1007/s10853-009-3442-7 CrossRefADSGoogle Scholar
  10. 10.
    Goodenough JB (1960) Phys Rev 117:1442CrossRefADSGoogle Scholar
  11. 11.
    Wentzcovitch RM, Schulz WW, Allen PB (1994) Phys Rev Lett 72:3389CrossRefPubMedADSGoogle Scholar
  12. 12.
    Rice TM, Launois H, Pouget JP (1994) Phys Rev Lett 73:3042CrossRefPubMedADSGoogle Scholar
  13. 13.
    Biermann S, Poteryaev A, Lichtenstein AI, Georges A (2005) Phys Rev Lett 94:026404CrossRefPubMedADSGoogle Scholar
  14. 14.
    Sakuma R, Miyake T, Aryasetiawan F (2008) Phys Rev B 78:075106CrossRefADSGoogle Scholar
  15. 15.
    Koethe TC, Hu Z, Haverkort MW, Schüßler-Langeheine C, Venturini F, Brookes NB, Tjernberg O, Reichelt W, Hsieh HH, Lin H-J, Chen CT, Tjeng LH (2006) Phys Rev Lett 97:116402CrossRefPubMedADSGoogle Scholar
  16. 16.
    Kim HT (2002) . Physica C 341–348:259Google Scholar
  17. 17.
    Brinkman WF, Rice TM (1970) Phys Rev B 2:4302CrossRefADSGoogle Scholar
  18. 18.
    Boyce JB, Bridges FG, Claeson T, Geballe TH, Li GG, Sleight AW (1991) Phys Rev B 44:6961CrossRefADSGoogle Scholar
  19. 19.
    Arcangeletti E, Baldassarre L, Castro DDi, Lupi S, Malavasi L, Marini C, Perucchi A, Postorino P (2007) Phys Rev Lett 98:196406CrossRefPubMedADSGoogle Scholar
  20. 20.
    Moore RG, Zhang J, Nascimento VB, Jin R, Guo Jiandong, Wang GT, Fang Z, Mandrus D, Plummer EW (2007) Science 318:615CrossRefPubMedADSGoogle Scholar
  21. 21.
    Berglund CN, Guggenheim HJ (1969) Phys Rev 185:1022CrossRefADSGoogle Scholar
  22. 22.
    Barker AS Jr, Verleur HW, Guggenheim HJ (1966) Phys Rev Lett 17:1286CrossRefADSGoogle Scholar
  23. 23.
    Verleur HW, Barker AS Jr, Berglund CN (1968) Phys Rev 172:788CrossRefADSGoogle Scholar
  24. 24.
    Paul W (1970) Mat Res Bull 5:691CrossRefGoogle Scholar
  25. 25.
    Gavini A, Kwan CCY (1972) . Phys Rev B 5:3138CrossRefADSGoogle Scholar
  26. 26.
    Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11:10757CrossRefPubMedGoogle Scholar
  27. 27.
    Cohen AJ, Mori-Sánchez P, Yang W (2008) Phys Rev B 77:115123CrossRefADSGoogle Scholar
  28. 28.
    Cohen AJ, Mori-Sánchez P, Yang W (2008) Science 321:792CrossRefPubMedADSGoogle Scholar
  29. 29.
    Mosey NJ, Liao P, Carter EA (2008) J Chem Phys 129:014103CrossRefPubMedADSGoogle Scholar
  30. 30.
    Mori-Sánchez P, Cohen AJ,Yang W (2009) Phys Rev Lett 102:066403CrossRefPubMedADSGoogle Scholar
  31. 31.
    Janesko BG, Henderson TM, Scuseria GE (2009) Phys Chem Chem Phys 11:443CrossRefPubMedGoogle Scholar
  32. 32.
    Nieminen RM (2009) Modelling Simul Mater Sci Eng 17:084001CrossRefADSGoogle Scholar
  33. 33.
    Segall MD, Lindan PLD, Probert MJ, Pickard C, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Condens Matter 14:2717CrossRefADSGoogle Scholar
  34. 34.
    Hammer B, Hansen LB, Norskov JK (1999) Phys Rev B 59:7413CrossRefADSGoogle Scholar
  35. 35.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244CrossRefADSGoogle Scholar
  36. 36.
    Vanderbilt D (1990) Phys Rev B 59:7892CrossRefADSGoogle Scholar
  37. 37.
    Anisimov V, Zaanen J, Andersen OK (1991) Phys Rev B 44:943CrossRefADSGoogle Scholar
  38. 38.
    Cococcioni M, De Gironcoli S (2005) Phys Rev B 71:035105CrossRefADSGoogle Scholar
  39. 39.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505CrossRefADSGoogle Scholar
  40. 40.
    Mulliken RS (1955) J Chem Phys 23:1833CrossRefADSGoogle Scholar
  41. 41.
    Davidson ER, Chakravorty S (1992) Theor Chim Acta 83:319CrossRefGoogle Scholar
  42. 42.
    Segall MD, Pickard CJ, Shah R, Payne MC (1996) Phys Rev B 54:16317CrossRefADSGoogle Scholar
  43. 43.
    McWhan DB, Marezio M, Remeika JP, Dernier PD (1974) Phys Rev B 10:490CrossRefADSGoogle Scholar
  44. 44.
    Longo JM, Kierkegaard P (1970) Acta Chim Scand 24:420CrossRefGoogle Scholar
  45. 45.
    Ladd LA, Paul W (1969) Solid State Commun 7:425CrossRefADSGoogle Scholar
  46. 46.
    Chung W, Freericks JK (1998) Phys Rev B 57:11955CrossRefADSGoogle Scholar
  47. 47.
    Hague CF, Mariot J-M, Ilakovac V, Delaunay R (2008) Phys Rev B 77:045132CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PhysicsTianjin Polytechnic UniversityTianjinChina
  2. 2.School of PhysicsPeking UniversityBeijingChina
  3. 3.Graduate DepartmentTianjin Polytechnic UniversityTianjinChina

Personalised recommendations