Advertisement

Journal of Materials Science

, Volume 45, Issue 12, pp 3175–3183 | Cite as

Microwave sintering improves the mechanical properties of biphasic calcium phosphates from hydroxyapatite microspheres produced from hydrothermal processing

  • Dj. Veljović
  • E. Palcevskis
  • A. Dindune
  • S. Putić
  • I. Balać
  • R. Petrović
  • Dj. Janaćković
Article

Abstract

Starting from two microspherical agglomerated HAP powders, porous biphasic HAP/TCP bioceramics were obtained by microwave sintering. During the sintering the HAP powders turned into biphasic mixtures, whereby HAP was the dominant crystalline phase in the case of the sample with the higher Ca/P ratio (HAP1) while α-TCP was the dominant crystalline phase in the sample with lower Ca/P ratio (HAP2). The porous microstructures of the obtained bioceramics were characterized by spherical intra-agglomerate pores and shapeless inter-agglomerate pores. The fracture toughness of the HAP1 and HAP2 samples microwave sintered at 1200 °C for 15 min were 1.25 MPa m1/2. The phase composition of the obtained bioceramics only had a minor effect on the indentation fracture toughness compared to a unique microstructure consisting of spherical intra-agglomerate pores with strong bonds between the spherical agglomerates. Cold isostatic pressing at 400 MPa before microwave sintering led to an increase in the fracture toughness of the biphasic HAP/TCP bioceramics to 1.35 MPa m1/2.

Keywords

Fracture Toughness Biphasic Calcium Phosphate Green Compact Microwave Sinter Calcium Hydroxyapatite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to acknowledge the financial support from the Ministry of Science and Technological Development of the Republic of Serbia through projects 142070B and EUREKA E! 3033 Bionanocomposit. The Latvian authors also acknowledge the support of the Ministry of Education and Science of the Republic of Latvia under the EUREKA E! 3033 Bionanocomposit project.

References

  1. 1.
    Hench LL (1991) J Am Ceram Soc 74:1487CrossRefGoogle Scholar
  2. 2.
    Chevalier J, Gremillard L (2009) J Eur Ceram Soc 29:1245CrossRefGoogle Scholar
  3. 3.
    Descamps M, Hornez JC, Leriche A (2009) J Eur Ceram Soc 29:369CrossRefGoogle Scholar
  4. 4.
    Le Geros RZ, Lin S, Rohanizadeh R, Mijares D, Le Geros JP (2003) J Mater Sci Mater Med 14:201CrossRefGoogle Scholar
  5. 5.
    Shors EC, Holmes RE (1993) In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, SingaporeGoogle Scholar
  6. 6.
    Vani R, Girija EK, Elayaraja K, Parthiban SP, Kesavamoorthy R, Kalkura SN (2009) J Mater Sci Mater Med. doi:  10.1007/s10856-008-3480-8
  7. 7.
    Kawata M, Uchida H, Itatani K, Okada I, Koda S, Aizawa M (2004) J Mater Sci Mater Med 15:817CrossRefPubMedGoogle Scholar
  8. 8.
    Kumar R, Prakash KH, Cheang P, Khor KA (2005) Acta Mater 53:2327CrossRefGoogle Scholar
  9. 9.
    Barralet JE, Best S, Bonfield W (2000) J Mater Sci Mater Med 11:719CrossRefPubMedGoogle Scholar
  10. 10.
    Landi E, Tampieri A, Celotti G, Sprio S (2000) J Eur Ceram Soc 20:2377CrossRefGoogle Scholar
  11. 11.
    Ribeiro CC, Barrias CC, Barbosa MA (2006) J Mater Sci Mater Med 17:455CrossRefPubMedGoogle Scholar
  12. 12.
    Mayo MJ (1997) In: Chow GM, Noskova NI (eds) Nanostructured materials, materials science technology, NATO ASI Series. Kluwer Academic Publishers, RussiaGoogle Scholar
  13. 13.
    Groza JR (1999) Nanostruct Mater 12:987CrossRefGoogle Scholar
  14. 14.
    Veljovic Dj, Jokic B, Jankovic-Castvan I, Smiciklas I, Petrovic R, Janackovic Dj (2007) Key Eng Mater 330–332:259CrossRefGoogle Scholar
  15. 15.
    Veljovic Dj, Jokic B, Petrovic R, Palcevskis E, Dindune A, Mihailescu IN, Janaćkovic Dj (2009) Ceram Int 35:1407CrossRefGoogle Scholar
  16. 16.
    Tang CY, Uskokovic PS, Tsui CP, Veljovic Dj, Petrovic R, Janackovic Dj (2009) Ceram Int 35:2171CrossRefGoogle Scholar
  17. 17.
    Wang XL, Fan HS, Xiao YM, Zhang XD (2006) Mater Lett 60:455CrossRefGoogle Scholar
  18. 18.
    Vijayan S, Varma H (2002) Mater Lett 56:827CrossRefGoogle Scholar
  19. 19.
    Fang Y, Agrawal DK, Roy DM, Roy R (1994) J Mater Res 9:180CrossRefADSGoogle Scholar
  20. 20.
    Sutton WH (1989) Am Ceram Soc Bull 68:376Google Scholar
  21. 21.
    Muralithran G, Ramesh S (2000) Ceram Int 26:221CrossRefGoogle Scholar
  22. 22.
    Rao RR, Roopa HN, Kanan TS (1997) J Mater Sci Mater Med 8:511CrossRefPubMedGoogle Scholar
  23. 23.
    Aizava M, Hanazava T, Itatani K, Howell FS, Kishioka A (1999) J Mater Sci 34:2865. doi: 10.1023/A:1004635418655 CrossRefGoogle Scholar
  24. 24.
    Bose S, Saha SK (2003) J Am Ceram Soc 86:1055CrossRefGoogle Scholar
  25. 25.
    Jokic B, Tanaskovic D, Jankovic-Castvan I, Drmanic S, Petrovic R, Janackovic Dj (2007) J Mater Res 22:1156CrossRefADSGoogle Scholar
  26. 26.
    Janaćkovic Dj, Petrovic-Prelevic I, Kostic-Gvozdenovic Lj, Petrovic R, Jokanovic V, Uskovic D (2001) Key Eng Mater 203:192Google Scholar
  27. 27.
    Gross KA, Bhadang KA (2004) Biomaterials 25:1395CrossRefPubMedGoogle Scholar
  28. 28.
    Gross KA, Rodríguez-Lorenzo LM (2004) Biomaterials 25:1385CrossRefPubMedGoogle Scholar
  29. 29.
    Prokopiev O, Sevostianov I (2006) Mater Sci Eng A 431:218CrossRefGoogle Scholar
  30. 30.
    Fujishiro Y, Sato T, Okuwaki A (1995) J Mater Sci 6:172. doi: 10.1007/BF00120295 Google Scholar
  31. 31.
    Jokic B, Jankovic-Castvan I, Veljović Dj, Bucevac D, Obradovic-Djuricic K, Petrovic R, Janackovic Dj (2007) J Opt Adv Mater 9:1904Google Scholar
  32. 32.
    Evans AG, Charles EA (1976) J Am Ceram Soc 59:371CrossRefGoogle Scholar
  33. 33.
    Matijevic E (1998) J Eur Ceram Soc 18:1357CrossRefGoogle Scholar
  34. 34.
    Privman V, Goia D, Park J, Matijevic E (1999) J Colloid Interface Sci 213:36CrossRefPubMedGoogle Scholar
  35. 35.
    Goia DV, Matijevic E (1999) Colloids Surf A Physicochem Eng Asp 146:139CrossRefGoogle Scholar
  36. 36.
    Park J, Privman V, Matijevic E (2001) J Phys Chem B 105:11630CrossRefGoogle Scholar
  37. 37.
    Libert S, Gorshov V, Privman V, Gioa D, Matijevic E (2003) Adv Colloid Interface Sci 100–102:169CrossRefGoogle Scholar
  38. 38.
    Sondi I, Matijevic E (2003) Chem Mater 15:1322CrossRefGoogle Scholar
  39. 39.
    Thangamania N, Chinnakalib K, Gnanama FD (2002) Ceram Int 28:355CrossRefGoogle Scholar
  40. 40.
    Lawn BR, Jensen T, Arora A (1976) J Mater Sci Lett 11:573ADSGoogle Scholar
  41. 41.
    Chiang YM, Birnie DP, Kingery WD (1997) Physical ceramics. Wiley, New YorkGoogle Scholar
  42. 42.
    Lawn BR, Marshall DB (1979) J Am Ceram Soc 62:347CrossRefGoogle Scholar
  43. 43.
    Landuyt PV, Li F, Keustermans JP, Streydio JM, Delannay F, Munting E (1995) J Mater Sci Mater Med 6:8CrossRefGoogle Scholar
  44. 44.
    Callister WD (2003) Materials science and engineering: an introduction. Wiley, New YorkGoogle Scholar
  45. 45.
    Tancret F, Bouler JM, Chamousset J, Minois LM (2006) J Eur Ceram Soc 26:3647CrossRefGoogle Scholar
  46. 46.
    Banerjee A, Bandyopadhyay A, Bose S (2007) Mater Sci Eng C 27:729CrossRefGoogle Scholar
  47. 47.
    Raynaud S, Champion E, Lafon JP, Bernache-Assollant D (2002) Biomaterials 23:1081CrossRefPubMedGoogle Scholar
  48. 48.
    Raynaud S, Champion E, Bernache-Assollant D (2002) Biomaterials 23:1073CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dj. Veljović
    • 1
  • E. Palcevskis
    • 2
  • A. Dindune
    • 2
  • S. Putić
    • 1
  • I. Balać
    • 3
  • R. Petrović
    • 1
  • Dj. Janaćković
    • 1
  1. 1.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Inorganic ChemistryRiga Technical UniversityRigaLatvia
  3. 3.Faculty of Mechanical EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations