Journal of Materials Science

, Volume 45, Issue 17, pp 4689–4695 | Cite as

Microstructure evolution through heavy compression aided by thermodynamic calculations

  • Farideh Hajiakbari
  • Mahmoud Nili-Ahmadabadi
  • Behrang Poorganji
  • Tadashi Furuhara
Ultrafine Grained Materials


The induced martensite transformation in a dual-phase bainitic ferrite–austenite steel during heavy compression was studied by thermodynamic computations. Compression tests were conducted at temperatures of 298 and 573 K on the rectangle samples at the strain rate of 0.001 s−1. The samples were deformed to 40 and 70% of their original thickness. It was found that 70% compression of the steel at room temperature resulted in transformation of retained austenite to martensite, which is in agreement with thermodynamic calculations. Additionally, heavy compression resulted in the formation of fine grains with high angle grain boundaries which confirms grain refinement.


Austenite Martensite Mechanical Energy Severe Plastic Deformation Habit Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to express their thanks to the Iran National Science Foundation for financial support of this research and also thank Dr. Parsa for fruitful discussions.


  1. 1.
    Iranpour Mobarake M, Nili-Ahmadabadi M, Poorganji B, Fatehi A, Shirazi H, Furuhara T, Habibi Parsa M, Hossein Nedjad S (2008) Mater Sci Eng A 491(1–2):172Google Scholar
  2. 2.
    Iwahashi Y, Furukawa M, Horita Z, Nemoto M, Langdon TG (1998) Metall Mater Trans A 29(9):2245CrossRefGoogle Scholar
  3. 3.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45(1–4):103CrossRefGoogle Scholar
  4. 4.
    Huang CX, Wang K, Wu SD, Zhang ZF, Li GY, Li SX (2006) Acta Mater 54(3):655CrossRefGoogle Scholar
  5. 5.
    Shin DH, Kim YS, Lavernia EJ (2001) Acta Mater 49(13):2387CrossRefGoogle Scholar
  6. 6.
    Fukuda Y, Oh-Ishi K, Horita Z, Langdon TG (2002) Acta Mater 50(6):1359CrossRefGoogle Scholar
  7. 7.
    Son Y, Lee YK, Park KT, Lee CS, Shin DH (2005) Acta Mater 53(11):3125CrossRefGoogle Scholar
  8. 8.
    Chatterjee S, Bhadeshia HKDH (2007) Mater Sci Technol 23:1101CrossRefGoogle Scholar
  9. 9.
    Fisher JC, Turnbull D (1953) Acta Metall 1(3):310CrossRefGoogle Scholar
  10. 10.
    Patel JR, Cohen M (1953) Acta Metall 1(5):531CrossRefGoogle Scholar
  11. 11.
    Xie J, Zhu Y, Wang X (2000) J Mater Sci Technol 16:449Google Scholar
  12. 12.
    Nili-Ahmadabadi M, Hajiakbari F, Rad F, Karimi Z, Iranpour M, Poorganji B, Furuhara T (2010) J Nanosci Nanotechnol 10Google Scholar
  13. 13.
    Nili-Ahmadabadi M, Hajiakbari F, Poorganji B, Furuhara T (2010) Acta MaterGoogle Scholar
  14. 14.
    Dieter GE (1988) In: Rosa I (ed) Mechanical metallurgy. McGraw-Hill, New York, pp 43–72Google Scholar
  15. 15.
    Ivanisenko Yu, MacLaren I, Sauvage X, Valiev RZ, Fecht H-J (2006) Acta Mater 54(6):1659CrossRefGoogle Scholar
  16. 16.
    Yang HS, Bhadeshia HKDH (2009) Scr Mater 60(7):493CrossRefGoogle Scholar
  17. 17.
    Bell T, Owen WS (1967) Trans Met Soc AIME 239:1940Google Scholar
  18. 18.
    Bhadeshia HKDH, Edmonds DV (1980) Acta Metall 28(9):1265CrossRefGoogle Scholar
  19. 19.
    Bhadeshia HKDH (1981) Met Sci 15:178CrossRefGoogle Scholar
  20. 20.
    Nili Ahmadabadi M (1997) Metall Mater Trans A 28(10):2159CrossRefGoogle Scholar
  21. 21.
    Porter DA, Easterling KE (1986) Diffusionless transformation. Phase transformations in metals and alloys. Van Nostrand Reinhold, Berkshire, p 388Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Farideh Hajiakbari
    • 1
  • Mahmoud Nili-Ahmadabadi
    • 1
  • Behrang Poorganji
    • 2
  • Tadashi Furuhara
    • 2
  1. 1.School of Metallurgy and Materials EngineeringUniversity of TehranTehranIran
  2. 2.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations