Advertisement

Journal of Materials Science

, Volume 45, Issue 9, pp 2530–2533 | Cite as

Analytical relationship among nominal hardness, reduced Young’s modulus, the work of indentation, and strain hardening exponent

  • Dejun Ma
  • Chung Wo Ong
Letter
In an instrumented indentation test, the reduced modulus is expressed as:
$$ E_{\text{r}} = {\frac{\sqrt \pi }{2\beta }}{\frac{{S_{\text{u}} }}{{\sqrt {A(h_{\text{cm}} )} }}} $$

Keywords

Finite Element Simulation Indentation Depth Elastic Contact Instrument Indentation Conical Indenter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors acknowledge the support of the National Natural Science Foundation of China (10672185).

References

  1. 1.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefADSGoogle Scholar
  2. 2.
    Oliver WC, Pharr GM (2004) J Mater Res 19:3CrossRefADSGoogle Scholar
  3. 3.
    Ma D, Ong CW, Zhang T (2008) J Mater Res 23:2106CrossRefADSGoogle Scholar
  4. 4.
    Ma D, Ong CW, Zhang T (2009) Exp Mech 49:719CrossRefGoogle Scholar
  5. 5.
    Cheng Y-T, Cheng C-M (1998) Appl Phys Lett 73:614CrossRefADSGoogle Scholar
  6. 6.
    Ma D, Ong CW, Liu J, He J (2004) Sci China Ser E Eng Mater 47:398CrossRefGoogle Scholar
  7. 7.
    Lockett FJ (1963) J Mech Phys Solids 11:345CrossRefADSGoogle Scholar
  8. 8.
    Yu W, Blanchard JP (1996) J Mater Res 11:2358CrossRefADSGoogle Scholar
  9. 9.
    Sneddon IN (1965) Int J Eng Sci 3:47MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Pharr GM, Oliver WC, Brotzen FR (1992) J Mater Res 7:613CrossRefADSGoogle Scholar
  11. 11.
    Cheng C-M, Cheng Y-T (1997) Appl Phys Lett 71:2623CrossRefADSGoogle Scholar
  12. 12.
    Dao M, Chollacoop N, Van Vliet KL, Venkatesh TA, Suresh S (2001) Acta Mater 49:3899CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe Academy of Armored Forces EngineeringBeijingPeople’s Republic of China
  2. 2.Department of Applied Physics and Materials Research CenterThe Hong Kong Polytechnic UniversityHong KongPeople’s Republic of China

Personalised recommendations