Advertisement

Journal of Materials Science

, Volume 45, Issue 10, pp 2780–2787 | Cite as

Response of radiation dosimeters based on in situ oxygen plasma post-treated CVD-diamond thin films to X-ray

  • Xiaoming Liao
  • Junguo Ran
  • Li Gou
Article

Abstract

Radiation dosimeters based on in situ oxygen plasma post-treated diamond thin films were fabricated in a simple sandwich configuration. Effects of deposition process, methane concentration, and in situ oxygen plasma post-treatment on the sensitivity of the devices to X-ray irradiation were investigated. X-ray response demonstrates that the cyclic deposition process could improve response sensitivity. The increase in methane concentration in the deposition gas mixture will worsen the irradiation response of the devices mainly resulted from the change of the orientation and purity of the films. X-ray photoelectron spectroscopy, photoluminescence, and Raman measurements suggest that in situ oxygen plasma post-treatment can effectively etch non-diamond phases and passivate the silicon-vacancy and nitrogen-vacancy defects of the diamond films, resulting in an increase in the sensitivity of the device by a factor of about 2. Time-dependent response to X-ray indicates that the extended period to achieve photocurrent signals stability for the devices is a limitation for promising applications in radiation dosimetry.

Keywords

Methane Concentration Oxygen Plasma Diamond Film Natural Diamond Radiation Dosimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 10275046). The authors would like to thank Mr. Jin Zhang of Southwest Petroleum University and Dr. Bing Wang of the Southwest University of Science And Technology for their kind help and instructive discussions.

References

  1. 1.
    Bruzzi M, Bucciolini M, Casati M, DeAngelis C, Lagomarsino S, Løvik I, Onori S, Sciortino S (2004) Nucl Instrum Methods Phys Res A 518:421CrossRefADSGoogle Scholar
  2. 2.
    Ascarelli P, Cappellia E, Trucchi DM, Conte G (2003) Diamond Relat Mater 12:691CrossRefGoogle Scholar
  3. 3.
    Fidanzio A, Azario L, Venanzi C, Pinzari F, Piermattei A (2002) Nucl Instrum Methods Phys Res A 479:661CrossRefADSGoogle Scholar
  4. 4.
    Bruzzi M, Bucciolini M, Nava F, Pini S, Russo S (2002) Nucl Instrum Methods Phys Res A 485:172CrossRefADSGoogle Scholar
  5. 5.
    Bruzzi M, Bucciolini M, Cirrone GAP, Cuttone G, Mazzocchi S, Pirollo S, Sciortino S (2000) Nucl Instrum Methods Phys Res A 454:142CrossRefADSGoogle Scholar
  6. 6.
    Buttar CM, Conway J, Meyfarth R, Scarsbrook G, Selin PJ, Whitehead A (1997) Nucl Instrum Methods Phys Res A 392:281CrossRefADSGoogle Scholar
  7. 7.
    Buttar CM, Airey R, Conway J, Hill G, Ramkumar S, Scarsbrook G, Sussmann RS, Walker S, Whitehead A (2000) Diamond Relat Mater 9:965CrossRefGoogle Scholar
  8. 8.
    Jung M, Merer Ph, Morel J, Teissier C, Siffert P (2003) Nucl Instrum Methods Phys Res A 511:417CrossRefADSGoogle Scholar
  9. 9.
    Ramkumar S, Buttar CM, Conway J, Whitehead AJ, Sussmann RS, Hill G, Walker S (2001) Nucl Instrum Methods Phys Res A 460:401CrossRefADSGoogle Scholar
  10. 10.
    Assiamah M, Nam TL, Keddy KJ (2007) Appl Radiat Isot 65:545CrossRefPubMedGoogle Scholar
  11. 11.
    Pini S, Bruzzi M, Bucciolini M, Borchi E, Lagomarsino S, Menichelli D, Miglio S, Nava F, Sciortino S (2003) Nucl Instrum Methods Phys Res A 514:135CrossRefADSGoogle Scholar
  12. 12.
    Marinelli M, Milani E, Paoletti A, Tucciarone A, Rinati GV, Angelone M, Pillon M (2001) Diamond Relat Mater 10:645CrossRefGoogle Scholar
  13. 13.
    Balducci A, Marinelli M, Milani E, Morgada ME, Pucella G, Rodriguez G, Tucciarone A, Verona-Rinati G, Angelone M, Pillon M (2005) Appl Phys Lett 86:022108CrossRefADSGoogle Scholar
  14. 14.
    McKeag RD, Jackman RB (1998) Diamond Relat Mater 7:513CrossRefGoogle Scholar
  15. 15.
    Barberini L, Cadeddu S, Caria M (2001) Nucl Instrum Methods Phys Res A 460:127CrossRefADSGoogle Scholar
  16. 16.
    Marczewska B, Nowak T, Olko P, Nesladek M, Waligórski MPR (2001) Physica B 308–310:1213CrossRefGoogle Scholar
  17. 17.
    Whitehead AJ, Aiery R, Buttar CM, Conway J, Hill G, Ramkumar S, Scarsbrook GA, Sussmann RS, Walker S (2001) Nucl Instrum Methods Phys Res A 460:20CrossRefADSGoogle Scholar
  18. 18.
    Liao XM, Ran JG, Gou L, Zhang J, Su BH, Lin JL (2007) Key Eng Mater 336–338(II):1718CrossRefGoogle Scholar
  19. 19.
    Spear KE (1989) J Am Ceram Soc 72:171CrossRefGoogle Scholar
  20. 20.
    Su QF, Liu JM, Wang LJ, Shi WM, Xia YB (2006) Scr Mater 54:1871CrossRefGoogle Scholar
  21. 21.
    Jiang X, Rickers C (2006) Appl Phys Lett 75:3935CrossRefADSGoogle Scholar
  22. 22.
    Jiang X, Zhang WJ, Klages CP (1998) Phys Rev B 58:7064CrossRefADSGoogle Scholar
  23. 23.
    Kim YK, Lee KY, Lee JY (1996) Thin Solid Films 272:64CrossRefADSGoogle Scholar
  24. 24.
    Marinelli M, Milani E, Pace E, Paoletti A, Santoro M, Sciortino S, Tucciarone A, Verona-Rinati G (1998) Diamond Relat Mater 7:1039CrossRefGoogle Scholar
  25. 25.
    Chen GC, Li B, Lan H, Dai FW, Zhou ZY, Askari J, Song JH, Hei LF, Li CM, Tang WZ, Lu FX (2007) Diamond Relat Mater 16:477CrossRefGoogle Scholar
  26. 26.
    Jany C, Foulon F, Bergonzo P, Brambilla A, Silva F, Gicqel A, Pochet T (1996) Diamond Relat Mater 5:741CrossRefGoogle Scholar
  27. 27.
    Jany C, Foulon F, Bergonzo P, Brambilla A, Gicqel A, Pochet T (1996) Nucl Instrum Methods Phys Res A 380:107CrossRefADSGoogle Scholar
  28. 28.
    Xia YB, Sekiguchi T, Zhang WJ, Jiang X, Ju JH, Wang LJ, Yao T (2000) Diamond Relat Mater 9:1636CrossRefGoogle Scholar
  29. 29.
    Donato MG, Faggio G, Marinelli M, Messina G, Milani E, Paoletti A, Santangelo S, Tucciarone A, Rinati GV (2001) Diamond Relat Mater 10:1788CrossRefGoogle Scholar
  30. 30.
    Jany C, Foulon F, Bergonzo P, Marshall RD (1998) Diamond Relat Mater 7:951CrossRefGoogle Scholar
  31. 31.
    Wang B, Ran JG, Gou L, Ji JG (2003) J Sichuan Univ (Eng Sci Ed) 35:58 (in Chinese)Google Scholar
  32. 32.
    Humbert B, Hellala N, Ehrhardt JJ, Barrat S, Bauer-grosse E (2008) Appl Surf Sci 254:6400CrossRefADSGoogle Scholar
  33. 33.
    Fan Y, Fitzgerald AG, John P, Triope CE, Wilson JIB (2002) Surf Interface Anal 34:703CrossRefGoogle Scholar
  34. 34.
    Knight DS, White WB (1989) J Mater Res 4:385CrossRefADSGoogle Scholar
  35. 35.
    Wang SG, Sellin PJ, Zahng Q, Lohstroh A, Ozsan ME, Tian JZ (2005) Diamond Relat Mater 14:541CrossRefGoogle Scholar
  36. 36.
    Solin SA, Ramdas AK (1970) Phys Rev B 1:1687CrossRefADSGoogle Scholar
  37. 37.
    Kobashi K, Nishimura K, Kawate Y, Horiuchi T (1988) Phys Rev B 38:4067CrossRefADSGoogle Scholar
  38. 38.
    Matsumoto S, Sato Y, Tsutsumi M, Setaka N (1982) J Mater Sci 17:3106. doi: 10.1007/BF01203472 CrossRefADSGoogle Scholar
  39. 39.
    Sato T, Furuno S, Iguchi S, Hanabusa M (1988) Appl Phys A 45:355CrossRefADSGoogle Scholar
  40. 40.
    Nesladek M, Stals LM, Stesmans A (1996) Appl Phys Lett 72:3306CrossRefADSGoogle Scholar
  41. 41.
    Iakoubovskii K, Adriaenssens GJ (2000) Diamond Relat Mater 9:1017CrossRefGoogle Scholar
  42. 42.
    Mckeag RD, Marshall RD, Baral B, Chan SSM, Jackman RB (1997) Diamond Relat Mater 6:361CrossRefGoogle Scholar
  43. 43.
    Bergman L, Stoner BR, Turner JT, Glass KF, Nemanich RJ (1993) J Appl Phys 73:3951CrossRefADSGoogle Scholar
  44. 44.
    Ruan J, Choyke WJ, Partlow WD (1991) Appl Phys Lett 58:295CrossRefADSGoogle Scholar
  45. 45.
    Iakoubovskii K, Adriaenssens GJ, Nesladek M (2000) J Phys Condens Matter 12:189CrossRefADSGoogle Scholar
  46. 46.
    Liao XM (2006) PhD thesis, Sichuan University, China (in Chinese)Google Scholar
  47. 47.
    Manfredotti C (2005) Diamond Relat Mater 14:531CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations