Journal of Materials Science

, Volume 45, Issue 10, pp 2732–2746 | Cite as

Microcellular processing of polylactide–hyperbranched polyester–nanoclay composites



The effects of addition of hyperbranched polyesters (HBPs) and nanoclay on the material properties of both solid and microcellular polylactide (PLA) produced via a conventional and microcellular injection-molding process, respectively, were investigated. The effects of two different types of HBPs (i.e., Boltorn H2004® and Boltorn H20®) at the same loading level (i.e., 12%), and the same type of HBP at different loading levels (i.e., Boltorn H2004® at 6 and 12%), as well as the simultaneous addition of 12% Boltorn H2004® and 2% Cloisite®30B nanoclay (i.e., HBP–nanoclay) on the thermal and mechanical properties (both static and dynamic), and the cell morphology of the microcellular components were noted. The addition of HBPs and/or HBP with nanoclay decreased the average cell size, and increased the cell density. The stress–strain plots of all the solid and microcellular PLA-H2004 blends showed considerable strain softening and cold drawing, indicating a ductile fracture mode. Among the two HBPs, samples with Boltorn H2004® showed higher strain-at-break and specific toughness compared to Boltorn H20®. Moreover, the sample with Boltorn H2004® and nanoclay exhibited the highest strain-at-break (626% for solid and 406% for microcellular) and specific toughness (405% for solid and 334% for microcellular). Finally, the specific toughness, strain-at-break, and specific strength of microcellular samples were found to be lower than their solid counterparts.


Storage Modulus Dynamic Mechanical Analysis Cold Crystallization Cold Drawing Average Cell Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge the financial support from National Science Foundation (CMMI-0544729), the USDA Forest Products Laboratory for the use of its equipment to compound the materials and Perstorp Polyols Inc., USA for donating the Boltorn HBPs.


  1. 1.
    Carole TM, Pellegrino J, Paster MD (2004) Appl Biochem Biotechnol 113–116:871CrossRefPubMedGoogle Scholar
  2. 2.
    Gross RA, Kalra B (2002) Science 297(5582):803CrossRefPubMedADSGoogle Scholar
  3. 3.
    Kuriam JV (2005) In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC press, Boca RatonGoogle Scholar
  4. 4.
    Mohanty AK, Misra M, Drzal LT (2002) J Polym Environ 10(1–2):19CrossRefGoogle Scholar
  5. 5.
    Pilla S, Gong S, O’Neill E, Yang L, Rowell RM (2009) J Appl Polym Sci 111(1):37CrossRefGoogle Scholar
  6. 6.
    Bhardwaj R, Mohanty AK (2007) J Biobased Mater Bioenergy 1:191CrossRefGoogle Scholar
  7. 7.
    Heino A, Naukkarinen A, Kulju T, Törmälä P, Pohjonen T, Mäkelä EA (1996) J Biomed Mater Res 30:187CrossRefPubMedGoogle Scholar
  8. 8.
    Luciano RM, Zavaglia CAC, Duek EAR, Alberto-Rincon MC (2003) J Mater Sci Mater Med 14:87CrossRefPubMedGoogle Scholar
  9. 9.
    Itoh E, Matsuda S, Yamauchi K, Oka T, Iwata H, Yamaoka Y, Ikada Y (2000) J Biomed Mater Res 53:640CrossRefPubMedGoogle Scholar
  10. 10.
    Bleach NC, Nazhat SN, Tanner KE, Kellomaki M, Tormala P (2002) Biomaterials 23:1579CrossRefPubMedGoogle Scholar
  11. 11.
    Furukawa T, Matsusue Y, Yasunaga T, Shikinami Y, Okuno M, Nakamura T (2000) Biomaterials 21:889CrossRefPubMedGoogle Scholar
  12. 12.
    Park YJ, Nam KH, Ha SJ, Pai CM, Chung CP, Lee SJ (1997) J Controlled Release 43:151CrossRefGoogle Scholar
  13. 13.
    Giardino R, Fini M, Aldini NN, Giavaresi G, Rocca M (1999) J Trauma 47:303CrossRefPubMedGoogle Scholar
  14. 14.
    Lee SH, Kim BS, Kim SH, Kang SW, Kim YH (2004) Macromol Biosci 4:802CrossRefPubMedGoogle Scholar
  15. 15.
    Pego AP, Siebum B, Van Luyn MJA, Gallego Y Van Seijen XJ, Poot AA, Grijpma DW, Feijen J (2003) Tissue Eng 9:981Google Scholar
  16. 16.
    Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835CrossRefPubMedGoogle Scholar
  17. 17.
    Grijpma DW, Zondervan GJ, Pennings AJ (1991) Polym Bull 25:327CrossRefGoogle Scholar
  18. 18.
    Wehrenberg RH (1981) Mater Eng 94:63Google Scholar
  19. 19.
    Hiljanen-Vainio M, Karjalainen T, Seppala JV (1996) J Appl Polym Sci 59:1281CrossRefGoogle Scholar
  20. 20.
    Hiljanen-Vainio M, Orava PA, Seppala JV (1997) J Biomed Mater Res 34:39CrossRefPubMedGoogle Scholar
  21. 21.
    Buchholz B (1993) J Mater Sci Mater Med 4:381CrossRefGoogle Scholar
  22. 22.
    Nakayama A, Kawasaki N, Arvanitoyannis I, Iyoda J, Yamamoto N (1995) Polymer 36(6):1295CrossRefGoogle Scholar
  23. 23.
    Joziasse CAP, Grablowitz H, Pennings AJ (2000) Macromol Chem Phys 201:107CrossRefGoogle Scholar
  24. 24.
    Kylma J, Seppaela JV (1997) Macromolecules 30(10):2876CrossRefADSGoogle Scholar
  25. 25.
    Storey RF, Wiggins JS, Puckett AD (1994) J Polym Sci Part A 32(12):2345CrossRefGoogle Scholar
  26. 26.
    Stolt M, Hiltunen K, Sodergard A (2001) Biomacromolecules 2(4):1243CrossRefPubMedGoogle Scholar
  27. 27.
    Aslan S, Calandrelli L, Laurienzo P, Malinconico M, Migliaresi C (2000) J Mater Sci Mater Med 35(7):1615Google Scholar
  28. 28.
    Hiljanen-Vainio M, Varpomaa P, Seppala J, Tormala P (1996) Macromol Chem Phys 197(4):1503CrossRefGoogle Scholar
  29. 29.
    Maglio G, Migliozzi A, Palumbo R, Immirzi B, Volpe MG (1999) Macromol Rapid Commun 20(4):236CrossRefGoogle Scholar
  30. 30.
    Maglio G, Malinconico M, Migliozzi A, Groeninckx G (2004) Macromol Chem Phys 205(7):946CrossRefGoogle Scholar
  31. 31.
    Meredith JC, Amis E (2000) Macromol Chem Phys 201(6):733CrossRefGoogle Scholar
  32. 32.
    Kylma J, Hiljanen-Vainio M, Seppala J (2000) J Appl Polym Sci 76(7):1074CrossRefGoogle Scholar
  33. 33.
    Kylma J, Seppala J (2000) J Appl Polym Sci 79(8):1531CrossRefGoogle Scholar
  34. 34.
    Shibata M, Inoue Y, Miyoshi Y (2006) Polymer 47:3557CrossRefGoogle Scholar
  35. 35.
    Hiljanen-Vainio M, Kylmae J, Hiltunen K, Seppaelae JV (1997) J Appl Polym Sci 63(10):1335CrossRefGoogle Scholar
  36. 36.
    Ljungberg N, Wesslen B (2005) Biomacromolecules 6:1789CrossRefPubMedGoogle Scholar
  37. 37.
    Martin O, Averous L (2001) Polymer 42:6209CrossRefGoogle Scholar
  38. 38.
    Bhardwaj R, Mohanty AK (2007) Biomacromolecules 8:2476CrossRefPubMedGoogle Scholar
  39. 39.
    Lin Y, Zhang KY, Dong ZM, Dong LS, Li YS (2007) Macromolecules 40:6257CrossRefADSGoogle Scholar
  40. 40.
    Wong S, Shanks RA, Hodzic A (2004) Macromol Mater Eng 289:447CrossRefGoogle Scholar
  41. 41.
    Zhang W, Zhang Y, Chen Y (2008) Iran Polym J 17(12):891Google Scholar
  42. 42.
    Zhang JF, Sun X (2004) Polym Int 53:716CrossRefGoogle Scholar
  43. 43.
    Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7:199CrossRefPubMedGoogle Scholar
  44. 44.
    Seiler M (2002) Chem Eng Technol 25(3):237CrossRefGoogle Scholar
  45. 45.
    Hong Y, Coombs SJ, Cooper-White JJ, Mackay ME, Hawker CJ, Malmstrom E, Rehnberg N (2000) Polymer 41:7705CrossRefGoogle Scholar
  46. 46.
    Jannerfeldt G, Boogh L, Manson JAE (2000) Polymer 41:7627CrossRefGoogle Scholar
  47. 47.
    Kil SB, Augros Y, Leterrier Y, Manson JAE (2003) Polym Eng Sci 43(2):329CrossRefGoogle Scholar
  48. 48.
    Mezzenga R, Boogh L, Manson JAE (2001) Compos Sci Technol 61(5):787CrossRefGoogle Scholar
  49. 49.
    Okonishnikov GB, Blednykh EI, Skripov Mekh VP (1973) Polimerov 2:370Google Scholar
  50. 50.
    Martini JE, Waldman FA, Suh NP (1982) In: SPE ANTEC Technical Papers, 28: 674Google Scholar
  51. 51.
    Naguib HE, Park CB, Reichelt N (2004) J Appl Polym Sci 91:2661CrossRefGoogle Scholar
  52. 52.
    Pilla S, Kramschuster A, Gong S, Chandra A, Turng LS (2007) Int Polym Proc XXII(5):418–428Google Scholar
  53. 53.
    Kramschuster A, Pilla S, Gong S, Chandra A, Turng LS (2007) Int Polym Proc XXII(5):436–445Google Scholar
  54. 54.
    Kramschuster A, Gong S, Turng LS, Li T, Li T (2007) J Biobased Mater Bioenergy 1:37CrossRefGoogle Scholar
  55. 55.
    Kramschuster A, Cavitt R, Ermer D, Chen Z, Turng LS (2005) Polym Eng Sci 45(10):1408CrossRefGoogle Scholar
  56. 56.
    Naguib HE, Park CB, Lee PC (2003) J Cell Plast 39(6):499CrossRefGoogle Scholar
  57. 57.
    Pilla S, Kramschuster A, Lee J, Auer GK, Gong S, Turng LS (2009) Compos Interfaces 16(7–9):869CrossRefGoogle Scholar
  58. 58.
    Chandra A, Gong S, Yuan M, Turng LS (2005) Polym Eng Sci 45(1):52CrossRefGoogle Scholar
  59. 59.
    Yuan M, Winardi A, Gong S, Turng LS (2005) Polym Eng Sci 45:773CrossRefGoogle Scholar
  60. 60.
    Gong A, Turng L-S, Park CB, Liao L (2008) In: Mohanty AK, Misra M, Nalwa HS (eds) Packaging nanotechnology. American Scientific Publishers, USAGoogle Scholar
  61. 61.
    Kwag C, Manke CW, Gulari E (1999) J Polym Sci B 37(19):2771CrossRefGoogle Scholar
  62. 62.
    Royer JR, Gay YJ, Desimone JM, Khan SA (2000) J Polym Sci B 38(23):3168CrossRefGoogle Scholar
  63. 63.
    Kwag C, Manke CW, Gulari E (2001) Ind Eng Chem Res 40(14):3048CrossRefGoogle Scholar
  64. 64.
    Suh NP (1996) In: Stevenson JF (ed) Innovation in polymer processing-molding. Hanser Publishers, MunichGoogle Scholar
  65. 65.
    Gong S, Yuan M, Chandra A, Winardi A, Osorio A, Turng L-S (2005) Int Polym Proc 2:202Google Scholar
  66. 66.
    Throne J (1979) In: Suh NP, Sung N (eds) Science and technology of polymer processing. MIT Press, Cambridge, MA, USAGoogle Scholar
  67. 67.
    Singh S, Ray SS (2007) J Nanosci Nanotechnol 7:2596CrossRefPubMedGoogle Scholar
  68. 68.
    Pilla S, Gong S, Turng LS (2010) In: Mittal V (ed) Polymer nanotube nanocomposites. Wiley-Scrivener, MA, USAGoogle Scholar
  69. 69.
    Rezgui F, Swistek M, Hiver JM, G’Sell C, Sadoun T (2005) Polymer 46(18):7370CrossRefGoogle Scholar
  70. 70.
    Garlotta D (2002) J Polym Environ 9:63CrossRefGoogle Scholar
  71. 71.
    Nam JY, Ray SS, Okamoto M (2003) Macromolecules 36(19):7126CrossRefADSGoogle Scholar
  72. 72.
    Wang H, Sun XZ, Seib P (2003) J Appl Polym Sci 90:3683CrossRefGoogle Scholar
  73. 73.
    Naguib HE, Park CB, Reichelt N, Panzer U (2002) Polym Eng Sci 42(7):1481CrossRefGoogle Scholar
  74. 74.
    Lee LJ, Zheng C, Cao X, Han X, Shen J, Xu G (2005) Compos Sci Technol 65(15–16):2344CrossRefGoogle Scholar
  75. 75.
    Kharbas H, Nelson P, Yuan M, Gong S, Turng LS (2003) Polym Compos 24(6):655CrossRefGoogle Scholar
  76. 76.
    Hodge IM (1983) Macromolecules 16(6):898CrossRefADSGoogle Scholar
  77. 77.
    Hodge IM, Huvard GS (1983) Macromolecules 16(3):371CrossRefADSGoogle Scholar
  78. 78.
    Behrens AR, Hodge IM (1982) Macromolecules 15(3):756CrossRefADSGoogle Scholar
  79. 79.
    Turi EA (1997) Thermal characterization of polymeric materials. Academic Press, USAGoogle Scholar
  80. 80.
    Masirek R, Kulinski Z, Chionna D, Piorkowska E, Pracella M (2007) J Appl Polym Sci 105(1):255CrossRefGoogle Scholar
  81. 81.
    Pracella M, Chionna D, Anguillesi I, Kulinski Z, Piorkowska E (2006) Compos Sci Technol 66(13):2218CrossRefGoogle Scholar
  82. 82.
    Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) J Polym Sci B 42:25CrossRefGoogle Scholar
  83. 83.
    Wang Y, Funari SS, Mano JF (2006) Macromol Chem Phys 207:1262CrossRefGoogle Scholar
  84. 84.
    Pothan LA, Thomas S, Groeninckx G (2006) Compos A 37(9):1260CrossRefGoogle Scholar
  85. 85.
    Van Vlack LH (1989) Elements of materials science and engineering. Addison-Wesley Publishing Company, USAGoogle Scholar
  86. 86.
    Yang L, Zhang C, Pilla S, Gong S (2008) Compos A 39:1653CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Srikanth Pilla
    • 1
  • Adam Kramschuster
    • 4
  • Jungjoo Lee
    • 4
  • Craig Clemons
    • 5
  • Shaoqin Gong
    • 1
    • 2
    • 3
  • Lih-Sheng Turng
    • 4
  1. 1.Department of Mechanical EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Department of MaterialsUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  3. 3.Department of Biomedical EngineeringUniversity of WisconsinMadisonUSA
  4. 4.Department of Mechanical Engineering, Polymer Engineering CenterUniversity of WisconsinMadisonUSA
  5. 5.Forest Products LaboratoryUSDA Forest ServiceMadisonUSA

Personalised recommendations