Advertisement

Journal of Materials Science

, Volume 45, Issue 10, pp 2703–2707 | Cite as

Synthesis and characterization of thermoresponsive shape-memory poly(stearyl acrylate-co-acrylamide) hydrogels

  • Xian Kai Lin
  • Li Chen
  • Yi Ping Zhao
  • Zhi Zhi Dong
Article

Abstract

A novel series of thermoresponsive shape-memory copolymer hydrogels (poly(stearyl acrylate-co-acrylamide)) were synthesized by radical copolymerization of stearyl acrylate (SA) and acrylamide (AM). The chemical structure and crystal property of the poly(SA-co-AM) hydrogels were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimeter. The thermodynamic property of the hydrogels was studied by dynamic mechanical analysis. The swelling ratio and the shape recovery ratio of the hydrogels were also investigated. The results indicate that base on a reversible order–disorder transition, the large difference in storage modulus below and above the crystal melting temperature (T m) of the poly(SA-co-AM) hydrogels. Furthermore, the prepared hydrogels can present excellent thermoresponsive shape-memory performance by changing the operation temperature below or above T m, and the highest shape recovery ratio can reach 97%.

Keywords

Storage Modulus Radical Copolymerization Lamellar Crystal Copolymer Hydrogel Differential Scanning Calorimeter Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 20574051 and 20774064), the Project of Science and Technical Development of China (Grant No. 2007AA03Z533), and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20050058001).

References

  1. 1.
    Feninat FE, Laroche G, Fiset M, Mantovani D (2002) Adv Eng Mater 4:91CrossRefGoogle Scholar
  2. 2.
    Lendlein A, Kelch S (2002) Angew Chem Int Ed 41:2034CrossRefGoogle Scholar
  3. 3.
    Zhu G, Liang G, Xu Q (2003) J Appl Polym Sci 90:1589CrossRefGoogle Scholar
  4. 4.
    Mitsumata T, Gong JP, Osada Y (2001) Polym Adv Technol 12:136CrossRefGoogle Scholar
  5. 5.
    Liu GQ, Ding XB, Cao YP (2005) Macromol Rapid Commun 26:649CrossRefGoogle Scholar
  6. 6.
    Chang YW, Mishra JK, Cheong JH, Kim DK (2007) Polym Int 56:694CrossRefGoogle Scholar
  7. 7.
    Auad ML, Contos VS, Nutt S (2008) Polym Int 57:651CrossRefGoogle Scholar
  8. 8.
    Hornbogen E (2006) Adv Eng Mater 8:101CrossRefGoogle Scholar
  9. 9.
    Lendlein A, Langer R (2002) Science 296:1673CrossRefPubMedADSGoogle Scholar
  10. 10.
    Annette MS (2006) Macromol Rapid Commun 27:1168CrossRefGoogle Scholar
  11. 11.
    Debdatta R, Karger-Kocsis J (2008) J Mater Sci 43:254. doi: 10.1007/s10853-007-2176-7 CrossRefADSGoogle Scholar
  12. 12.
    Liu GQ, Ding XB, Cao YP (2006) Macromol Rapid Commun 27:1100CrossRefGoogle Scholar
  13. 13.
    Matsuda A, Sato JI, Osada Y (1994) Macromolecules 27:6485CrossRefGoogle Scholar
  14. 14.
    Osada Y, Matsuda A (1995) Nature 376:219CrossRefPubMedADSGoogle Scholar
  15. 15.
    Tanaka Y, Kagami Y, Matsuda A, Osada Y (1995) Macromolecules 28:2574CrossRefADSGoogle Scholar
  16. 16.
    Kagami Y, Gong JP, Osada Y (1996) Macromol Rapid Commun 17:539CrossRefGoogle Scholar
  17. 17.
    Reyntjens WG, Duprez FE, Goethals EJ (1999) Macromol Rapid Commun 20:251CrossRefGoogle Scholar
  18. 18.
    Plate NA, Shibaev VP, Petrukhin BS (1971) J Polym Sci 9:2291Google Scholar
  19. 19.
    Plate NA, Shibaev VP (1974) Macromol Rev 8:117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xian Kai Lin
    • 1
  • Li Chen
    • 1
  • Yi Ping Zhao
    • 1
  • Zhi Zhi Dong
    • 1
  1. 1.Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and EngineeringTianjin Polytechnic UniversityTianjinChina

Personalised recommendations